Skip to main content

Automated Segmentation of Lateral Ventricle in MR Images Using Multi-scale Feature Fusion Convolutional Neural Network

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12666))

Included in the following conference series:

Abstract

Studies have shown that the expansion of the lateral ventricle is closely related to many neurodegenerative diseases, so the segmentation of the lateral ventricle plays an important role in the diagnosis of related diseases. However, traditional segmentation methods are subjective, laborious, and time-consuming. Furthermore, due to the uneven magnetic field, irregular, small, and discontinuous shape of every single slice, the segmentation of the lateral ventricle is still a great challenge. In this paper, we propose an efficient and automatic lateral ventricle segmentation method in magnetic resonance (MR) images using a multi-scale feature fusion convolutional neural network (MFF-Net). First, we create a multi-center clinical dataset with a total of 117 patient MR scans. This dataset comes from two different hospitals and the images have different sampling intervals, different ages, and distinct image dimensions. Second, we present a new multi-scale feature fusion module (MSM) to capture different levels of feature information of lateral ventricles through various receptive fields. In particular, MSM can also extract the multi-scale lateral ventricle region feature information to solve the problem of insufficient feature extraction of small object regions with the deepening of network structure. Finally, extensive experiments have been conducted to evaluate the performance of the proposed MFF-Net. In addition, to verify the performance of the proposed method, we compare MFF-Net with seven state-of-the-art segmentation models. Both quantitative results and visual effects show that our MFF-Net outperforms other models and can achieve more accurate segmentation performance. The results also indicate that our model can be applied in clinical practice and is a feasible method for lateral ventricle segmentation.

F. Ye and Z. Wang—Co-first authors, contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation. arXiv preprint arXiv:1802.06955 (2018)

  2. Baaré, W.F., et al.: Volumes of brain structures in twins discordant for schizophrenia. Arch. Gen. Psychiatry 58(1), 33–40 (2001)

    Article  Google Scholar 

  3. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  4. Biswas, A., Bhattacharya, P., Maity, S.: An efficient volumetric segmentation of cerebral lateral ventricles. Procedia Comput. Sci. 133, 561–568 (2018)

    Article  Google Scholar 

  5. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with Atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  6. Chen, W., Smith, R., Ji, S.Y., Najarian, K.: Automated segmentation of lateral ventricles in brain CT images. In: 2008 IEEE International Conference on Bioinformatics and Biomeidcine Workshops, pp. 48–55. IEEE (2008)

    Google Scholar 

  7. Gan, K.: Automated segmentation of the lateral ventricle in MR images of human brain. In: 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 139–142. IEEE (2015)

    Google Scholar 

  8. Gu, R., et al.: CA-Net: comprehensive attention convolutional neural networks for explainable medical image segmentation. arXiv preprint arXiv:2009.10549 (2020)

  9. Hu, K., et al.: Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 309, 179–191 (2018)

    Article  Google Scholar 

  10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  11. Ng, H.F., Chuang, C.H., Hsu, C.H.: Extraction and analysis of structural features of lateral ventricle in brain medical images. In: 2012 Sixth International Conference on Genetic and Evolutionary Computing, pp. 35–38. IEEE (2012)

    Google Scholar 

  12. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  13. Qiu, W., et al.: Automatic segmentation approach to extracting neonatal cerebral ventricles from 3D ultrasound images. Med. Image Anal. 35, 181–191 (2017)

    Article  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Schnack, H., Pol, H.H., Baaré, W.F.C., Viergever, M., Kahn, R.: Automatic segmentation of the ventricular system from MR images of the human brain. Neuroimage 14(1), 95–104 (2001)

    Article  Google Scholar 

  16. Shao, M., et al.: Shortcomings of ventricle segmentation using deep convolutional networks. In: Stoyanov, D., et al. (eds.) MLCN/DLF/IMIMIC -2018. LNCS, vol. 11038, pp. 79–86. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02628-8_9

    Chapter  Google Scholar 

  17. Takikawa, T., Acuna, D., Jampani, V., Fidler, S.: Gated-SCNN: gated shape CNNs for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5229–5238 (2019)

    Google Scholar 

  18. Wu, J., Zhang, Y., Tang, X.: Simultaneous tissue classification and lateral ventricle segmentation via a 2D U-net driven by a 3D fully convolutional neural network. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5928–5931. IEEE (2019)

    Google Scholar 

  19. Zhu, Y., Chen, Z., Zhao, S., Xie, H., Guo, W., Zhang, Y.: ACE-Net: biomedical image segmentation with augmented contracting and expansive paths. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 712–720. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_79

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61802328, 61972333 and 61771415, the Natural Science Foundation of Hunan Province of China under Grant 2019JJ50606, and the Research Foundation of Education Department of Hunan Province of China under Grant 19B561.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Hu or Xieping Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, F., Wang, Z., Hu, K., Zhu, S., Gao, X. (2021). Automated Segmentation of Lateral Ventricle in MR Images Using Multi-scale Feature Fusion Convolutional Neural Network. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12666. Springer, Cham. https://doi.org/10.1007/978-3-030-68780-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68780-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68779-3

  • Online ISBN: 978-3-030-68780-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics