Skip to main content

Developing a Segmentation Model for Microscopic Images of Microplastics Isolated from Clams

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

Microplastics (MP) have become a major concern, given the threat they pose to marine-derived food and human health. One way to investigate this threat is to quantify MP found in marine organisms, for instance making use of image analysis to identify ingested MP in fluorescent microscopic images. In this study, we propose a deep learning-based segmentation model to generate binarized images (masks) that make it possible to clearly separate MP from other background elements in the aforementioned type of images. Specifically, we created three variants of the U-Net model with a ResNet-101 encoder, training these variants with 99 high-resolution fluorescent images containing MP, each having a mask that was generated by experts using manual color threshold adjustments in ImageJ. To that end, we leveraged a sliding window and random selection to extract patches from the high-resolution images, making it possible to adhere to input constraints and to increase the number of labeled examples. When measuring effectiveness in terms of accuracy, recall, and F\(_{2}\)-score, all segmentation models exhibited low scores. However, compared to two ImageJ baseline methods, the effectiveness of our segmentation models was better in terms of precision, F\(_{0.5}\)-score, F\(_{1}\)-score, and mIoU: U-Net (1) obtained the highest mIoU of 0.559, U-Net (2) achieved the highest F\(_{1}\)-score of 0.682, and U-Net (3) had the highest precision and F\(_{0.5}\)-score of 0.594 and 0.626, respectively, with our segmentation models, in general, detecting less false positives in the predicted masks. In addition, U-Net (1), which used binary cross-entropy loss and stochastic gradient descent, and U-Net (2), which used dice loss and Adam, were most effective in discriminating MP from other background elements. Overall, our experimental results suggest that U-Net (1) and U-Net (2) allow for more effective MP identification and measurement than the macros currently available in ImageJ.

J. Y. Baek, M. K. de Guzman, H. Park, and S. Park—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://pytorch.org/docs/stable/optim.html.

References

  1. Anbumani, S., Kakkar, P.: Ecotoxicological effects of microplastics on biota: a review. Environ. Sci. Pollut. Res. 25(15), 14373–14396 (2018). https://doi.org/10.1007/s11356-018-1999-x

    Article  Google Scholar 

  2. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv preprint arXiv:1706.05587 (2017)

  3. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  4. Cole, M., Lindeque, P., Halsband, C., Galloway, T.S.: Microplastics as contaminants in the marine environment: a review. Mar. Pollut. Bull. 62(12), 2588–2597 (2011)

    Article  Google Scholar 

  5. Cressey, D.: The plastic ocean. Nature 536(7616), 263–265 (2016)

    Article  Google Scholar 

  6. Dehaut, A., et al.: Microplastics in seafood: benchmark protocol for their extraction and characterization. Environ. Pollut. 215, 223–233 (2016)

    Article  Google Scholar 

  7. Deng, R., Shen, C., Liu, S., Wang, H., Liu, X.: Learning to predict crisp boundaries. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 570–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_35

    Chapter  Google Scholar 

  8. Erni-Cassola, G., Gibson, M.I., Thompson, R.C., Christie-Oleza, J.A.: Lost, but found with nile red: a novel method for detecting and quantifying small microplastics (1 mm to 20 \(\varvec {\upmu }\)m) in environmental samples. Environ. Sci. Technol 51(23), 13641–13648 (2017)

    Article  Google Scholar 

  9. Galloway, T.S.: Micro- and nano-plastics and human health. In: Bergmann, M., Gutow, L., Klages, M. (eds.) Mar. Anthropogenic Litter, pp. 343–366. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16510-3_13

    Chapter  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  11. Isobe, A., Kubo, K., Tamura, Y., Nakashima, E., Fujii, N., et al.: Selective transport of microplastics and mesoplastics by drifting in coastal waters. Mar. Pollut. Bull. 89(1–2), 324–330 (2014)

    Article  Google Scholar 

  12. Jadon, S.: A survey of loss functions for semantic segmentation. arXiv preprint arXiv:2006.14822 (2020)

  13. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Maes, T., Jessop, R., Wellner, N., Haupt, K., Mayes, A.G.: A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci. Rep. 7(1), 1–10 (2017)

    Article  Google Scholar 

  15. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  16. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image Segmentation Using Deep Learning: A Survey. arXiv preprint arXiv:2001.05566 (2020)

  17. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT press, Cambridge (2012)

    MATH  Google Scholar 

  18. Prata, J.C., Alves, J.R., da Costa, J.P., Duarte, A.C., Rocha-Santos, T.: Major factors influencing the quantification of Nile Red stained microplastics and improved automatic quantification (MP-VAT 2.0). Sci. Total Environ. 719, 137498 (2020)

    Article  Google Scholar 

  19. Prata, J.C., Reis, V., Matos, J.T., da Costa, J.P., Duarte, A.C., Rocha-Santos, T.: A new approach for routine quantification of microplastics using Nile Red and automated software (MP-VAT). Sci. Total Environ. 690, 1277–1283 (2019)

    Article  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  22. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  23. Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability: Contributions to the Theory of Statistics, vol. 1, pp. 547–561. The Regents of the University of California, University of California Press (1961)

    Google Scholar 

  24. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012)

    Article  Google Scholar 

  25. Silva, A.B., Bastos, A.S., Justino, C.I., da Costa, J.P., Duarte, A.C., Rocha-Santos, T.A.: Microplastics in the environment: challenges in analytical chemistry - a review. Analytica Chimica Acta 1017, 1–19 (2018)

    Article  Google Scholar 

  26. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  27. Wesch, C., Bredimus, K., Paulus, M., Klein, R.: Towards the suitable monitoring of ingestion of microplastics by marine biota: A review. Environ. Pollut. 218, 1200–1208 (2016)

    Article  Google Scholar 

  28. Yakubovskiy, P.: Segmentation Models (2019). https://github.com/qubvel/segmentation_models

  29. Yan, F., Zhang, H., Kube, C.R.: A multistage adaptive thresholding method. Pattern Recogn. Lett 26(8), 1183–1191 (2005).https://doi.org/10.1016/j.patrec.2004.11.003, http://www.sciencedirect.com/science/article/pii/S0167865504003290

Download references

Acknowledgements

The research and development activities described in this paper were funded by Ghent University Global Campus (GUGC) and by the Special Research Fund (BOF) of Ghent University (grant no. 01N01718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-min Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baek, J.Y. et al. (2021). Developing a Segmentation Model for Microscopic Images of Microplastics Isolated from Clams. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12666. Springer, Cham. https://doi.org/10.1007/978-3-030-68780-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68780-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68779-3

  • Online ISBN: 978-3-030-68780-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics