Skip to main content

Transfer Learning Methods for Extracting, Classifying and Searching Large Collections of Historical Images and Their Captions

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12667))

Included in the following conference series:

  • 1864 Accesses

Abstract

This paper is about the creation of an interactive software tool and dataset useful for exploring the unindexed 11-volume set, Pompei: Pitture e Mosaici (PPM), a valuable resource containing over 20,000 annotated historical images of the archaeological site of Pompeii, Italy. The tool includes functionalities such as a word search, and an images and captions similarity search. Searches for similarity are conducted using transfer learning on the data retrieved from the scanned version of PPM. Image processing, convolutional neural networks and natural language processing also had to come into play to extract, classify, and archive the text and image data from the digitized version of the books.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aletras, N., Stevenson, M., Clough, P.: Computing similarity between items in a digital library of cultural heritage. J. Comput. Cult. Heritage (JOCCH) 5(4), 1–19 (2013)

    Google Scholar 

  2. Arnold, T., Tilton, L.: Enriching historic photography with structured data using image region segmentation. In: Proceedings of the 1st International Workshop on Artificial Intelligence for Historical Image Enrichment and Access, pp. 1–10 (2020)

    Google Scholar 

  3. Becattini, F., Ferracani, A., Landucci, L., Pezzatini, D., Uricchio, T., Del Bimbo, A.: Imaging novecento. A mobile app for automatic recognition of artworks and transfer of artistic styles. In: Ioannides, M., et al. (eds.) EuroMed 2016. LNCS, vol. 10058, pp. 781–791. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48496-9_62

    Chapter  Google Scholar 

  4. Belhi, A., Bouras, A., Foufou, S.: Leveraging known data for missing label prediction in cultural heritage context. Appl. Sci. 8(10), 1768 (2018)

    Article  Google Scholar 

  5. Díaz-Rodríguez, N., Pisoni, G.: Accessible cultural heritage through explainable artificial intelligence. In: 11th Workshop on Personalized Access to Cultural Heritage (2020)

    Google Scholar 

  6. Gultom, Y., Arymurthy, A.M., Masikome, R.J.: Batik classification using deep convolutional network transfer learning. J. Ilmu Komputer dan Inf. 11(2), 59–66 (2018)

    Article  Google Scholar 

  7. Jboor, N.H., et al.: Towards an inpainting framework for visual cultural heritage. In: 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), pp. 602–607. IEEE (2019)

    Google Scholar 

  8. Kulkarni, U., et al.: Classification of cultural heritage sites using transfer learning. In: 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM), pp. 391–397. IEEE (2019)

    Google Scholar 

  9. Liu, Y., et al.: A many-objective evolutionary algorithm using a one-by-one selection strategy. IEEE Trans. Cybern. 47(9), 2689–2702 (2017)

    Article  Google Scholar 

  10. Palma, V: Towards deep learning for architecture: amonument recognition mobile app. In: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences (2019)

    Google Scholar 

  11. Roullet, C., et al.: An automated technique to recognize and extract images from scanned archaeological documents. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 1, pp. 20–25. IEEE (2019)

    Google Scholar 

  12. Schulman, A.J., Mitchell, R.R.: Operating characteristics from yes-no and forced-choice procedures. J. Acoust. Soc. Am. 40(2), 473–477 (1966)

    Article  Google Scholar 

  13. Szegedy, C., et al.: Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint arXiv: 1602.07261 (2016)

  14. Szegedy, C., et al.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  15. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  16. Trstenjak, B., Mikac, S., Donko, D.: KNN with TF-IDF based framework for text categorization. Proc. Eng. 69, 1356–1364 (2014)

    Article  Google Scholar 

  17. Wang, J., et al.: Text similarity calculation method based on hybrid model of LDA and TF-IDF. In: Proceedings of the 2019 3rd International Conference on Computer Science and Artificial Intelligence, pp. 1–8 (2019)

    Google Scholar 

  18. Wevers, M., Smits, T.: The visual digital turn: using neural networks to study historical images. Digit. Scholarsh. Hum. 35(1), 194–207 (2020)

    Google Scholar 

  19. Zohar, M., Shimshoni, I., Khateb, F.: GIScience Integrated with Computer Vision for the Interpretation and Analysis of Old Paintings. In: GISTAM, pp. 233–239 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cindy Roullet , David Fredrick , John Gauch , Rhodora G. Vennarucci or William Loder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roullet, C., Fredrick, D., Gauch, J., Vennarucci, R.G., Loder, W. (2021). Transfer Learning Methods for Extracting, Classifying and Searching Large Collections of Historical Images and Their Captions. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12667. Springer, Cham. https://doi.org/10.1007/978-3-030-68787-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68787-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68786-1

  • Online ISBN: 978-3-030-68787-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics