Skip to main content

Using Graph Neural Networks to Reconstruct Ancient Documents

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12667))

Included in the following conference series:

  • 2112 Accesses

Abstract

In recent years, machine learning and deep learning approaches such as artificial neural networks have gained in popularity for the resolution of automatic puzzle resolution problems. Indeed, these methods are able to extract high-level representations from images, and then can be trained to separate matching image pieces from non-matching ones. These applications have many similarities to the problem of ancient document reconstruction from partially recovered fragments. In this work we present a solution based on a Graph Neural Network, using pairwise patch information to assign labels to edges representing the spatial relationships between pairs. This network classifies the relationship between a source and a target patch as being one of Up, Down, Left, Right or None. By doing so for all edges, our model outputs a new graph representing a reconstruction proposal. Finally, we show that our model is not only able to provide correct classifications at the edge-level, but also to generate partial or full reconstruction graphs from a set of patches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Papyrology Collection. https://www.lib.umich.edu/collections/collecting-areas/special-collections-and-archives/papyrology-collection

  2. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: 2010 20th International Conference on Pattern Recognition, pp. 3121–3124. IEEE (2010)

    Google Scholar 

  3. Cho, T.S., Avidan, S., Freeman, W.T.: A probabilistic image jigsaw puzzle solver. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 183–190. IEEE (2010)

    Google Scholar 

  4. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  5. Franz, M., Lopes, C.T., Huck, G., Dong, Y., Sumer, O., Bader, G.D.: Cytoscape.js: a graph theory library for visualisation and analysis. Bioinformatics 32(2), 309–311 (2016)

    Google Scholar 

  6. Jin, S.Y., Lee, S., Azis, N.A., Choi, H.J.: Jigsaw puzzle image retrieval via pairwise compatibility measurement. In: 2014 International Conference on Big Data and Smart Computing (BIGCOMP), pp. 123–127. IEEE (2014)

    Google Scholar 

  7. Kelleher, J.D., Mac Namee, B., D’arcy, A.: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. MIT Press, Cambridge (2020)

    Google Scholar 

  8. Kleber, F., Sablatnig, R.: A survey of techniques for document and archaeology artefact reconstruction. In: 2009 10th International Conference on Document Analysis and Recognition, pp. 1061–1065. IEEE (2009)

    Google Scholar 

  9. Mondal, D., Wang, Y., Durocher, S.: Robust solvers for square jigsaw puzzles. In: 2013 International Conference on Computer and Robot Vision, pp. 249–256. IEEE (2013)

    Google Scholar 

  10. Ostertag, C., Beurton-Aimar, M.: Matching ostraca fragments using a Siamese neural network. Pattern Recogn. Lett. 131, 336–340 (2020)

    Article  Google Scholar 

  11. Paikin, G., Tal, A.: Solving multiple square jigsaw puzzles with missing pieces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4832–4839 (2015)

    Google Scholar 

  12. Paumard, M.M., Picard, D., Tabia, H.: Jigsaw puzzle solving using local feature co-occurrences in deep neural networks. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 1018–1022. IEEE (2018)

    Google Scholar 

  13. Pirrone, A., Aimar, M.B., Journet, N.: Papy-S-Net: a Siamese network to match papyrus fragments. In: Proceedings of the 5th International Workshop on Historical Document Imaging and Processing, pp. 78–83 (2019)

    Google Scholar 

  14. Rasheed, N.A., Nordin, M.J.: A survey of classification and reconstruction methods for the 2D archaeological objects. In: 2015 International Symposium on Technology Management and Emerging Technologies (ISTMET), pp. 142–147. IEEE (2015)

    Google Scholar 

  15. Wadhwani, M., Kundu, D., Chakraborty, D., Chanda, B.: Text extraction and restoration of old handwritten documents. arXiv preprint arXiv:2001.08742 (2020)

  16. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innova.on programme (grant agreement No. 758907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Ostertag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ostertag, C., Beurton-Aimar, M. (2021). Using Graph Neural Networks to Reconstruct Ancient Documents. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12667. Springer, Cham. https://doi.org/10.1007/978-3-030-68787-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68787-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68786-1

  • Online ISBN: 978-3-030-68787-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics