Skip to main content

Training of Multiple and Mixed Tasks with a Single Network Using Feature Modulation

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12662))

Included in the following conference series:

  • 2191 Accesses

Abstract

In recent years, multi-task learning (MTL) for image translation tasks has been actively explored. For MTL image translation, a network consisting of a shared encoder and multiple task-specific decoders is commonly used. In this case, half parts of the network are task-specific, which brings a significant increase in the number of parameters when the number of tasks increases. Therefore, task-specific parts should be as small as possible. In this paper, we propose a method for MTL image translation using a single network with negligibly small task-specific parts, in which we share not only the encoder part but also the decoder part. In the proposed method, activation signals are adjusted for each task using Feature-wise Linear Modulation (FiLM) which performs affine transformation based on task conditional signals. In addition, we tried to let a single network learn mixing of heterogeneous tasks such as a mix of semantic segmentation and style transfer. With several experiments, we demonstrate that a single network is able to learn heterogeneous image translation tasks and their mixed tasks by following our proposed method. In addition, despite its small model size, our network achieves better performance than some of the latest baselines in most of the individual tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bragman, F.J., Tanno, R., Ourselin, S., Alexander, D.C., Cardoso, J.: Stochastic filter groups for multi-task CNNs: learning specialist and generalist convolution kernels. In: ICCV (2019)

    Google Scholar 

  2. Chang, S., Park, S., Yang, J., Kwak, N.: Sym-parameterized dynamic inference for mixed-domain image translation. In: ICCV (2019)

    Google Scholar 

  3. Chen, Z., Badrinarayanan, V., Lee, C., Rabinovich, A.: GradNorm: gradient normalization for adaptive loss balancing in deep multitask networks. In: ICML (2018)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  5. Dumoulin, V., Perez, E., Schucher, N., Strub, F., Vries, H.d., Courville, A., Bengio, Y.: Feature-wise transformations (2018). https://doi.org/10.23915/distill.00011. https://distill.pub/2018/feature-wise-transformations

  6. Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. In: ICLR (2017)

    Google Scholar 

  7. Dvornik, N., Shmelkov, K., Mairal, J., Schmid, C.: Blitznet: a real-time deep network for scene understanding. In: ICCV (2017)

    Google Scholar 

  8. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: ICCV (2015)

    Google Scholar 

  9. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. In: IJCV (2015)

    Google Scholar 

  10. Ghiasi, G., Lee, H., Kudlur, M., Dumoulin, V., Shlens, J.: Exploring the structure of a real-time, arbitrary neural artistic stylization network. In: BMVC (2017)

    Google Scholar 

  11. Girshick, R.: Fast R-CNN. In: ICCV (2015)

    Google Scholar 

  12. Hariharan, B., Arbelaez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: ICCV (2011)

    Google Scholar 

  13. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  14. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

    Google Scholar 

  15. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)

    Google Scholar 

  16. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11

    Chapter  Google Scholar 

  17. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  18. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  19. Kaiser, L., et al.: One model to learn them all. arXiv:1706.05137 (2017)

  20. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)

    Google Scholar 

  21. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: CVPR (2018)

    Google Scholar 

  22. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  23. Kokkinos, I.: UberNet: training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. In: ICCV (2017)

    Google Scholar 

  24. Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: CVPR (2019)

    Google Scholar 

  25. Mallya, A., Davis, D., Lazebnik, S.: Piggyback: adapting a single network to multiple tasks by learning to mask weights. In: ECCV (2018)

    Google Scholar 

  26. Maninis, K.K., Radosavovic, I., Kokkinos, I.: Attentive single-tasking of multiple tasks. In: CVPR (2019)

    Google Scholar 

  27. Matsumoto, A., Yanai, K.: Continual learning of an image transformation network using task-dependent weight selection masks. In: ACPR (2019)

    Google Scholar 

  28. Guo, M., Haque, A., Huang, D.-A., Yeung, S., Fei-Fei, L.: Dynamic task prioritization for multitask learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 282–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_17

    Chapter  Google Scholar 

  29. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-task learning. In: CVPR (2016)

    Google Scholar 

  30. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: a review. arXiv:1802.07569 (2018)

  31. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)

    Google Scholar 

  32. Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A.: FiLM: visual reasoning with a general conditioning layer. In: AAAI (2018)

    Google Scholar 

  33. Rosenfeld, A., Biparva, M., Tsotsos, J.K.: Priming neural networks. arXiv:1711.05918 (2017)

  34. Standley, T., Zamir, A.R., Chen, D., Guibas, L.J., Malik, J., Savarese, S.: Which tasks should be learned together in multi-task learning? arXiv:1905.07553 (2019)

  35. Strezoski, G., van Noord, N., Worring, M.: Many task learning with task routing. In: ICCV (2019)

    Google Scholar 

  36. Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Instance normalization: the missing ingredient for fast stylization. arXiv:1607.08022 (2016)

  37. Vandenhende, S., Brabandere, B.D., Gool, L.V.: Branched multi-task networks: deciding what layers to share. arXiv:1904.02920 (2019)

  38. Zhao, X., Li, H., Shen, X., Liang, X., Wu, Y.: A modulation module for multi-task learning with applications in image retrieval. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 415–432. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_25

    Chapter  Google Scholar 

  39. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Yanai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Takeda, M., Benitez, G., Yanai, K. (2021). Training of Multiple and Mixed Tasks with a Single Network Using Feature Modulation. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12662. Springer, Cham. https://doi.org/10.1007/978-3-030-68790-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68790-8_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68789-2

  • Online ISBN: 978-3-030-68790-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics