Skip to main content

The \(2^\mathrm{nd}\) 106-Point Lightweight Facial Landmark Localization Grand Challenge

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

Facial landmark localization has been applied to numerous face related applications, such as face recognition and face image synthesis. It is a very crucial step for achieving high performance in these applications. We host the \(2^\mathrm{nd}\) 106-point lightweight facial landmark localization grand challenge in conjunction with ICPR 2020. The purpose is to make effort towards benchmarking lightweight facial landmark localization, which enables efficient system deployment. Compared with the \(1^\mathrm{st}\) grand challenge (https://facial-landmarks-localization-challenge.github.io/), the JD-landmark-v2 dataset contains more than 24,000 images with larger variations in identity, pose, expression and occlusion. Besides, strict limits of model size (\(\le \)20M) and computational complexity (\(\le \)1G Flops) are employed for computational efficiency. The challenge has attracted attention from academia and industrial practitioners. More than 70 teams participate in the competition, and nine of them involve in the final evaluation. We give a detailed introduction of the competition and the solution by the winners in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://fllc-icpr2020.github.io/home/.

  2. 2.

    https://ibug.doc.ic.ac.uk/home.

References

  1. https://ibug.doc.ic.ac.uk/resources/300-W/

  2. https://ibug.doc.ic.ac.uk/resources/2nd-facial-landmark-tracking-competition-menpo-ben/

  3. https://ibug.doc.ic.ac.uk/resources/300-VW/

  4. https://facial-landmarks-localization-challenge.github.io/

  5. http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html

  6. https://ibug.doc.ic.ac.uk/resources/1st-3d-face-tracking-wild-competition/

  7. https://neerajkumar.org/databases/lfpw/

  8. http://www.ifp.illinois.edu/~vuongle2/helen/

  9. https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/

  10. Bao, Q., Liu, W., Hong, J., Duan, L., Mei, T.: Pose-native network architecture search for multi-person human pose estimation. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 592–600 (2020)

    Google Scholar 

  11. Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar, N.: Localizing parts of faces using a consensus of exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2930–2940 (2013)

    Article  Google Scholar 

  12. Feng, Z.H., Kittler, J., Awais, M., Huber, P., Wu, X.J.: Wing loss for robust facial landmark localisation with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2235–2245 (2018)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Huang, J., Zhu, Z., Huang, G.: Multi-stage HRNet: multiple stage high-resolution network for human pose estimation. arXiv preprint arXiv:1910.05901 (2019)

  15. Kemelmacher-Shlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The megaface benchmark: 1 million faces for recognition at scale. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4873–4882 (2016)

    Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  17. Lai, S., Chai, Z., Li, S., Meng, H., Yang, M., Wei, X.: Enhanced normalized mean error loss for robust facial landmark detection. In: British Machine Vision Conference, p. 111 (2019)

    Google Scholar 

  18. Lai, S., Chai, Z., Wei, X.: Improved hourglass structure for high performance facial landmark detection. In: Proceedings of IEEE International Conference on Multimedia & Expo Workshops, pp. 669–672. IEEE (2019)

    Google Scholar 

  19. Le, V., Brandt, J., Lin, Z., Bourdev, L., Huang, T.S.: Interactive facial feature localization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 679–692. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_49

    Chapter  Google Scholar 

  20. Liu, Y., et al.: Grand challenge of 106-point facial landmark localization. In: IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 613–616. IEEE (2019)

    Google Scholar 

  21. Liu, Y., Shi, H., Shen, H., Si, Y., Wang, X., Mei, T.: A new dataset and boundary-attention semantic segmentation for face parsing. In: Association for the Advancement of Artificial Intelligence, pp. 11637–11644 (2020)

    Google Scholar 

  22. Nibali, A., He, Z., Morgan, S., Prendergast, L.: Numerical coordinate regression with convolutional neural networks. arXiv preprint arXiv:1801.07372 (2018)

  23. Ruan, W., Liu, W., Bao, Q., Chen, J., Cheng, Y., Mei, T.: POINet: pose-guided ovonic insight network for multi-person pose tracking. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 284–292 (2019)

    Google Scholar 

  24. Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: the first facial landmark localization challenge. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 397–403 (2013)

    Google Scholar 

  25. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  26. Shen, J., Zafeiriou, S., Chrysos, G.G., Kossaifi, J., Tzimiropoulos, G., Pantic, M.: The first facial landmark tracking in-the-wild challenge: benchmark and results. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 50–58 (2015)

    Google Scholar 

  27. Smith, B.M., Zhang, L., Brandt, J., Lin, Z., Yang, J.: Exemplar-based face parsing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3484–3491 (2013)

    Google Scholar 

  28. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  29. Ting, Z., Guo-Jun, Q., Bin, X., Jingdong, W.: Interleaved group convolutions for deep neural networks. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  30. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1365–1374 (2019)

    Google Scholar 

  31. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  32. Wu, W., Qian, C., Yang, S., Wang, Q., Cai, Y., Zhou, Q.: Look at boundary: a boundary-aware face alignment algorithm. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  33. Zafeiriou, S., Chrysos, G.G., Roussos, A., Ververas, E., Deng, J., Trigeorgis, G.: The 3D Menpo facial landmark tracking challenge. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2503–2511 (2017)

    Google Scholar 

  34. Zafeiriou, S., Trigeorgis, G., Chrysos, G., Deng, J., Shen, J.: The Menpo facial landmark localisation challenge: a step towards the solution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 170–179 (2017)

    Google Scholar 

  35. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2879–2886. IEEE (2012)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Key R&D Program of China under Grant No. 2020AAA0103800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailin Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y. et al. (2021). The \(2^\mathrm{nd}\) 106-Point Lightweight Facial Landmark Localization Grand Challenge. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12668. Springer, Cham. https://doi.org/10.1007/978-3-030-68793-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68793-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68792-2

  • Online ISBN: 978-3-030-68793-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics