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Abstract—In previous works, a mobile application was devel-
oped using an unmodified commercial off-the-shelf smartphone
to recognize whole-body exercises. The working principle was
based on the ultrasound Doppler sensing with the device built-
in hardware. Applying such a lab-environment trained model
on realistic application variations causes a significant drop in
performance, and thus decimate its applicability. The reason of
the reduced performance can be manifold. It could be induced by
the user, environment, and device variations in realistic scenarios.
Such scenarios are often more complex and diverse, which can
be challenging to anticipate in the initial training data. To
study and overcome this issue, this paper presents a database
with controlled and uncontrolled subsets of fitness exercises. We
propose two concepts to utilize small adaption data to successfully
improve model generalization in an uncontrolled environment,
increasing the recognition accuracy by two to six folds compared
to the baseline for different users.

I. INTRODUCTION

Human activity recognition (HAR) covers a wide range
of application areas. Understanding human actions in daily
living enables application designers to build assisting smart
home applications for elderly care [1], security applications
with video surveillance [2], applications for Quantified-self
[3], [4], or associate physiological signals with emotions [5]
to build interactive applications. HAR is the key to enable
human-centered application designs and natural interaction in
a smart environment [6].

However, human motion is highly complex and possesses
a high degree of freedom. This is expressed with the term
user-diversity. Learning a generalized model for all possible
variations of a human motion is very challenging. Training
a model on limited amount of individuals under constrained
environment often leads to a large performance drop when
applying the model on individuals/environments disjoint from
the training data. This reduction in performance originates
from the large variations between the controlled training data
and the real-world application scenarios. It is caused by the
diversity and complexity of the users actions, the device hard-
ware or other environmental variations. However, all possible
reasons lead to a degradation in the usability of the proposed
application. One possible solution is to reduce the inherent
difference between the development dataset and the real-world

dataset by making the development data resemble the real-
world data. However, due to the diversity in the real-world
applications, there is no generalized model that is applicable
in all possible situations.

This work addresses sport exercise recognition from a
stationary smartphone using the Doppler measurement. We
propose a set of methods to improve the generalization of
a pre-trained model (trained on controlled data) to scenarios
containing a combination of unseen environments, individuals,
and devices. To achieve this, we propose and investigate
two concepts, along with a clear baseline that demonstrate
the generalization problem. We have developed a mobile
application that aims at collecting data that is used to deal
with this challenge. Our application is based on the built-
in hardware of a commercial smartphone to measure whole-
body exercise activities. The main contribution of this work is
grouped as follows:

• A novel database for investigating micro-Doppler motion
in relation to whole-body exercise data with built-in
smartphone hardware. The database contains sessions
in controlled environment, as well as a disjoint subset
containing variations of environments, individuals, and
devices.

• Propose and adapt two concepts (with variations) to im-
prove the recognition generalization. These concepts are
based on domain adaptions, as well as few-shot learning.
Both concepts proved to enhance the generalizability on
data variations in comparison to a clear baseline.

The structure of the paper is organized as follows: in
section II we provide current researches on the topic of
finetuning approaches with the focus on model generalization
to fit new data and categorized these approaches under two
main categories (retrain required and not). In Section III we
introduce one of the main contributions of this paper by
presenting our collected database. We first motivate the need
for such a database. We then introduce the sensing principle
and describe the details about the database and what it enables
us to study. In section IV, we propose the baseline model
and the new approaches targeting our problem, under two
main concepts. Section V introduces evaluation results of our
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proposed individual approaches, along the baseline. We further
discuss the advantages and disadvantages of certain methods
and provide some guidelines in design choice for such an
application. Finally, we conclude our work in Section VI and
provide relevant future research directions.

II. RELATED WORKS

Andrew Ng once stated [7], that the most frequent fail of
inference model in reality is the inherent difference between
your development set and test set. To overcome this prob-
lem, effort can be put into developing highly-representative
development/training databases. Though, it is impossible to
make the development set identical to the test set (application
scenario), due to the large variety and complexity in human
activities. Common methods to adapt the pre-trained model on
individual new data samples without enforcing much restric-
tions on the development set is thus desirable. We distinguish
between two main categories: with and without retraining the
base model to adapt to new data.

a) Retraining of the Base Model: Domain adaptation
builds on transferring knowledge from similar domains to
cope with unknown target domains. This method is especially
useful, when you do not have enough annotated datasets for the
particular problem at hand. The goal is to extract knowledge
from related, known datasets, and use this knowledge to learn
the new task at hand.

Wang [8] benefited from using similar labeled source do-
main data to annotate the target domain that has only a few or
even no labels. They evaluated their approach on acceleration
dataset from different body positions as different domains.
To alleviate the problem of negative knowledge transfer, they
proposed an unsupervised similarity measure to choose the
right source domain with respect to the target domain. Khan
and Roy et al. [9] proposed a CNN based transductive transfer
learning model to adapt action recognition classifiers trained in
one context to be applicable to a different contextual domain.
The limitation is that the set of activities being monitored is
the same in both context domains, as they are transferring
knowledge from individual convolutional layers. Evaluated
on their acquired smartphone and smartwatch acceleration
dataset on 15 users and 8 activities, they demonstrated the
ability of their proposed methods on transferring knowledge
from smartphone to smartwatch domain and vice versa. By
incorporating a small amount of target labels, they were able
to further increase the performance.

These methods pose less constraints on the target domain,
however are difficult to train, as the knowledge transfer is
solely based on the source domains. Thus the choice of the
appropriate source domain is critical for the performance of the
inference model on the unknown target domain. A retraining is
required to relate the source domain to the new target domain
due to knowledge transfer.

b) No Retraining of the Base Model: Few-shot learning
is currently an active research field in machine learning. The
ability of deep neural networks to learn complex correlations
and patterns from a vast dataset is proven. However, current

deep learning approaches suffer from the problem of poor
sample efficiency. To make a model learn on a new class,
sufficient amount of labeled samples from this class is required
to avoid overfitting.

Few-shot learning methods increase the model generaliz-
ability with limited data. They have been mostly used in
image classification tasks [10], [11]. Feng [12] recently ap-
plied few-shot learning-based classification on human activity
recognition tasks. They applied a deep learning framework
to automatically extract features and perform classification.
However, instead of transferring knowledge in a common fea-
ture space, their proposed method tends to perform knowledge
transfer in terms of model parameter transfer. Based on two
benchmark datasets, they evaluated their proposed technique.
A metric to measure the cross-domain class-wise relevance
is introduced to mitigate the challenging issue of negative
transfer. These datasets consist of only sparse sensory input,
mostly acceleration sensor data attached to different body
parts.

We consider this category to be the most realistic in de-
signing applications for human activity recognition tasks with
sensory data. Since we can not adopt to the complexity and
diversity of all persons actions during the training phase, we
need the network to have the ability to adapt to individual
users by introducing only a small amount of this users data to
optimize the trained network. Few-shot classification methods
are methods that can be leveraged to unseen classes, even when
less labels from these classes are available without retraining
the base model.

Exercise detection on personal devices is often applied to
track daily ambulation activities [13], [14]. For tracking of
more stationary activities involving whole-body interaction, a
remote system is better than wearing a smartphone on the
body, as the detection is more unobtrusive. However, the
complexity and diversity in human action makes it difficult to
develop one single system to fits all situations. To overcome
this issue, it requires more advanced machine learning methods
to improve the model generalization.

III. ULTRASONIC SMARTPHONE EXERCISES: SENSING AND
DATABASE

In this paper, we contribute a database collected with built-
in hardware of commercial smartphones. This database deals
with exercise data using Doppler sensing by utilising the
smartphone as a sonar device. Using smartphone to collect
activity data is not novel per se. Most existing databases are,
however, focused on acceleration data using the smartphone
as a wearable device. Popular databases are for example
provided in the works [15], [16], [13]. Though tracking and
recognizing for various aerobic training exercises are popular,
there exists limited research on recognizing more stationary
exercises, such as strength-based training without the use
of wearable. These exercises are essential for rehabilitation
purposes [17]. Typically they are even harder to track, as
they rely on coordinated movement of specific body parts.
Instead of building customized hardware designs such as in



[3], [4] to target these exercises, we leveraged the existent
infrastructure of a commercial mobile device to build an
ubiquitous application. The set of stationary and strength-
based exercises are depicted in Figure 1.

A. Sensing Principle

By emitting a 20 kHz continuous audio signal from the
built-in speaker, we turned the commercial smartphone into
an active sonar device. The echo encoded with the Doppler
modulation is received from the device internal microphone.
Doppler measurement allows us to catch relative movement
in close range to the sensing device. A positive Doppler
is received with a relative speed towards the device and a
negative Doppler vice versa. The device speaker can typically
emit tones in the range of 18-22 kHz on a commodity audio
system without performance degradation. Thus, we can detect
a one-sided Doppler speed up to 17.4m

s (2.05 kHz). To extract
the relative movement from Doppler signal, a Short Time
Fourier Transformation (STFT) [18] is used to convert the
continuous time signal to the spectrum domain of interest.
The parameter of STFT determines the resolution in time
and frequency domain. The selected frequency resolution
corresponds to a relative speed of 3 cm

s (3.6 Hz) with a time
resolution of 46.5 ms. A sliding window approach of 6 s
windows and an overlap of 50 % are chosen to prepare data
samples used to train the classification task. To further reduce
the computational effort, we restrict the spectrum amplitudes
within frequency band between 19.5 kHz to 20.5 kHz, as other
signals beyond the motion information are irrelevant. A typical
push-up exercise takes around 2-3 s each [19], depending on
the individual fitness. We conclude that with the current system
setting, we are able to resolve both the slowest and fastest
movement of the targeted exercise set.
B. Database

This database allows us to study the body motion in relation
to Doppler profiles from built-in hardware of various com-
mercial smartphones. The effect of fine-grained movements
from both limbs and arms cause micro-Doppler patterns in
addition to the main Doppler reflection. Studying these micro-
Doppler events enhances the ability of recognizing more
complex and naturalistic human activities including whole-
body interactions. To the best of our knowledge, there does not
exist such a database so far. Due to the similarity of ultrasound
sensing and electromagnetic waves in physical characteristics,
this database can also be leveraged for machine learning
practitioners to design radar-based applications and gain useful
insight without the additional cost of customized hardware.

The presented database consist of two different setups,
in order to investigate the effects of various methods on
improving model generalization for different data distributions.
Data of the first setup is called Lab-Data. The Lab-Data
consists of data collected in a laboratory setup as depicted in
Figure 1 from 14 individuals. The group consists of 4 females
(157 cm-172 cm) and 10 males (172 cm-193 cm). The affinity
towards sport exercises varies across the test participants. The
built-in microphone of the sensing device is placed 50 cm

apart, facing the exercising individuals on the floor, aligned
with the hip as depicted in Figure 1. For each individual, two
separate sessions were collected with 10 repetitions of each
exercise class. Left and right variations for exercises such as
segmented rotation, trunk rotation, and quadruped are counted
as one repetition. Swim is performed in average for 30 s in
each session to reach similar time duration comparable to the
other exercise types. In order to collect the micro-Doppler
motions from the arms, the device is aligned with the shoulder
for swim and trunk rotation. The duration of each session is
approximately 7-9 minutes in average. The smartphone used
for data acquisition has the brand Samsung Galaxy A6 (2018)
and the placement of the sensing device to the exercising body
is constrained to the same position for all participants.

The goal of the second setup is to be leveraged on testing
various finetuning approaches, as these data are collected
under individual, different hardware, and uncontrolled envi-
ronments independent of the Lab setup. This part of data
is called the Uncontrolled-Data. It consists of data collected
from five different individuals. Due to logistic and privacy
constrains related to the experimental setup, the second setup
contains a smaller number of participants compared to the Lab-
Data. The hardware device is not limited to the smartphone
used in the Lab-Data. Each individual was asked to collect
eight individual sessions distributed over several days in
their familiar surroundings and without any supervision. Each
session has a comparable length to the collected data from
the Lab-Data. Some general statistics about the participants
and the hardware devices used, are listed in Table I. The data
acquisition app is installed on the individual mobile device.
The participants from the uncontrolled setup were asked to
collected data from their home environment to simulate the
real-world scenarios. Figure 2 illustrates the different data
acquisition environments that affect the signal strength of the
underlying hardware device. In contrast to the Lab setup, the
other apartments all have wooden floors which makes the back
reflected signal strength stronger compared to the Lab setup.

This paper aims at investigating methods to improve the
generalizability of pre-trained models on new individuals un-
der more realistic conditions. Based on the underlying method,
we split the data as follows:

• Basic training data contain all individuals and sessions of
the Lab-Data.

• Subject development data contains 4 sessions (out of
8) of each of the users in the uncontrolled setup, the
Uncontrolled-Data.

• Testing data contains the 4 sessions (out of 8) of each
of the users in the uncontrolled setup, the Uncontrolled-
Data, that were not used in the Subject development data.

IV. METHODS

This paper is motivated by our observations from our
previous experiences in realistic use of mobile device to detect
workout exercises without using additional external hardware
[20]. However, previous work faced a major usability chal-
lenge as it did not adapt well on individuals and environments



push-up sit-up squat segmental rot.

trunk rot. swim bridge quadruped
Fig. 1. Figure shows the eight workout exercises we present in our novel database. The smartphone is placed roughly 50 cm away from the body of the
performing user.

Participant Sex Height Exercise Frequency Device Location
P1 male 180 cm Frequent SONY Xperia XZ2 Compact Environment 1
P2 male 181 cm Frequent Samsung Galaxy A5 (2017) Environment 2
P3 male 181 cm Frequent SONY Xperia Z5 Dual Environment 3
P4 male 182 cm Frequent Samsung Galaxy A6 (2018) Environment 4
P5 female 168 cm Less Frequent SONY Xperia XZ2 Compact Environment 1

TABLE I
DESCRIPTION OF SOFTWARE AND HARDWARE SETUPS FOR THE UNCONTROLLED-DATA.

Environment 1 Environment 2 Environment 3 Environment 4
Fig. 2. Illustration depicts the four different data acquisition setups from the individual test participants.

unseen in the training phase. This issue is the main target of
the methods presented in this paper. To state the problem, we
observed the input signal of the same participant performing
the same set of physical activities under two different environ-
ments with the same hardware and sensor position. Despite the
overall speed and appearance remain similar, the strength and
noise embedded reveal a strong difference in both settings. We
noticed a strong decay in signal power due to the material-
dependent attenuation of the transmit power.

Realistically, we can not train a classifier adapting to every
possible sensing environment, unless our training data unreal-
istically contain unlimited variations. The quality of hardware
devices integrated in the smartphone may also introduce strong
variations in the signal power. But the basic physical charac-
teristics remain. To adapt to new, real-world circumstances,
we need to individually finetune the trained model. In this
paper, we investigate several approaches to improve the model
generalizability given limited individual data.

A. The baseline method
The base inference model is built using a stacked bidi-

rectional LSTM network. To baseline our proposed solution,
we need to demonstrate the exercises detection performance
when the uncontrolled environment is not considered. The
choice of using this sequence model is due to its ability to
consider the global and sequence structure within a sample
time window. The architecture of this sequence modeling
network consists of 2 stacked bidirectional LSTM layers with
128 hidden nodes in each LSTM cell. For each input node, a

slice of spectrogram with the frequency bands (ranging from
19.5 kHz to 20.5 kHz) from a time step resolution (46.5 ms)
is provided to the network. The bidirectional structure permits
the network to look forward and backward in time to extract
fine-grained sequence information from the spectrum domain.

An 2-D instance normalization layer is applied on the
sample spectrogram prior to the network input in order to
reduce the hardware specific power dependencies. The num-
ber of output classes are nine that includes the eight true
activity classes with the additional none class describing all
the transitions and noisy samples between two successive
action classes. The learning rate is set to 0.001 and the Adam
Optimizer is used to optimize the network parameters. Cross
entropy loss is used as the cost function to minimize the
loss of the misclassification error from the training samples.
Batch-wise training is used, while in each batch, 15 samples
of each class are randomly selected from the training data
to construct similar training procedures compared to other
network structures.

The training contains the Lab-Data only. Subject develop-
ment data with 4 sessions from the Uncontrolled-Data is used
in the validation stage, while the 4 sessions of the remain-
ing Uncontrolled-Data is used in the test phase. Batch-wise
approach is applied, while each batch contains 15 samples
randomly selected from each class.

B. Our proposed method 1: Domain adaptation
To improve the model generalization ability, the first method

we propose is from the domain adaptation (DA) network



Fig. 3. depicts the domain adaptation model. Source and target data are
projected into the same embedding space using the common base ConvNet.
Adaptation is realized by minimizing the classification losses for source and
target and reducing differences in both feature distributions.

family. DA is commonly used to transfer knowledge from
labeled source domain to target domain where data is unla-
beled or only partially labeled. In our case, the source domain
refers to the Lab-Data, while the target domain refers to the
Uncontrolled-Data collected by the different individuals under
changed conditions. The aim of such an adaption network is
to make the distribution of the source and target embeddings
in the common embedding space more similar, such that
the classification network works well on both domains. By
applying this architecture, we aim at adopting the base feature
extractors to be sensitive to deterministic features from the
Uncontrolled-Data domain with the knowledge draw from the
source domain. In such a way, the classification performance
does improve for the uncontrolled setup.

The metric to measure the similarity of both distributions
is based on the maximum mean discrepancy (MMD) on the
final feature level. The model architecture of the adaptation
network is depicted in Figure 3. Common approaches using
domain adaption do not require to include target labels. How-
ever, without any label information from the target domain,
the knowledge transfer does not work well on the targeted
use-case, as both domains are quite dissimilar. In order to
improve the knowledge transfer characteristic, we included
partial labels (50 %) from the subject development set of the
Uncontrolled-Data to increase the performance on feature level
adaptation. An instance normalization layer is used prior to
the ConvNet to mitigate the hardware dependent effects of the
transmit power from different smartphone models.

A base ConvNet is used to extract common features from
source and target domain. The ConvNet structure consists
of 4 successive convolutional layers, each followed by a
batch normalization layer, leaky rectified linear unit (ReLU)
activation layer with the negative slope coefficient of 0.2 and
a max pooling layer to reduce the input dimensions. The
successive layers increased the number of filters from 32-32-
64-64. The same ConvNet structure is used for all networks as
the feature extraction component in this work. The embeddings
in the embedding space are used to minimize the classification
loss of the source and target domain. The objective is to
minimize the combination of three different losses as given in
Equation (1) : both cross entropy losses from the source and
target domain classification, and the MMD loss of the feature

embeddings originated from the source and target domain in
the same embedding space.

L = L(gϕ(fθ(xs)), ys) + L((gϕ(fθ(xt)), yt) + LMMD (1)

The network is trained with 100 epochs. Each batch com-
posites of 15 samples from each of the 9 classes. Adam
optimizer with a learning rate of 0.001 is set to learn the
network hyperparameters. Since the base feature extraction
network needs to be optimized on both data domains, a
retraining of the base model is required. We applied the
Lab-Data as the source domain and the uncontrolled subject
development set as the target domain. The adapted model is
evaluated on the testing data of the uncontrolled setup.

This method is good to adopt the feature extraction layers to
work for features from different domains. A negative aspect is
that if both domains differ too much, it could lead to a negative
adaptation and causing the performance on the source data
to decrease. To address this issue, we present the following
methods which do not need to retrain the pre-trained inference
model to finetune to new individuals. We benefit from a few
labels of the new datasets to label this unknown dataset.

C. Our proposed method 2: Few-shot classification
This section deals with three methods from the research

domain of the few-shot classification learning. The network
is trying to learn common features within a subset of tasks
without retraining.

a) F1: Siamese Network with Few-Shot Classification:
The Siamese network consists of two identical feature extrac-
tion base networks with shared weight parameters. The learned
feature embeddings from both inputs are then compared with
each other to form a similarity score. Commonly it is used
for verification tasks and the score indicates how similar
two input samples are. Instead of the verification task as
performed in common Siamese networks, we extended it for
the few-shot classification task. In contrast to the domain
adaptation method, this method can train on disjoint data.
The Uncontrolled-Data is not used in the training stage.
The working principle is depicted in Figure 4. Our network
structure aims at learning the optimum separation between all
multiple classes at once.

During training time, each training batch consists of 15
query samples from each class. The support set consists of
5 support samples from each class. They are fed through the
feature extraction network ConvNet fθ to get the embeddings.
In case the support of each class is larger than one sample,
a mean embedding is calculated to reduce the computational
complexity. A similarity score is determined for the query
sample embedding fθ(xq) and the individual support class
embeddings fθ(xi), where i = 1..C and C represents the
number of classes. To determine the similarity score, an
euclidean distance vector between the feature embeddings
is calculated by |fθ(xq)− fθ(xi)|. This distance measure is
further fed through a dense layer to learn the final similarity
score δi = σ(ϕ(|fθ(xq)− fθ(xi)|)). This parametric dense
layer is optimized by a pair of input samples every time step.



Fig. 4. The Siamese network for few-shot classification task is to learn the
optimum separability for the multiclass classification problem. The ConvNet
structure is used to generate feature embeddings. A distance measure is
calculated for the query sample with all possible support classes. The output
label is the highest similarity score within the multiple classes.

Based on the similarity measure between the query sample and
all other support classes (δ1, δ2, δ3, ..., δC), the objective of
the Siamese network is to maximize the maximum likelihood
estimation of data pairs or equally to minimize the negative
log likelihood cost function.

Adam optimizer is used to train the network parameter with
a learning rate of 0.0005. 500 Epochs were performed during
the training phase with 9-ways-5-shots. Fifteen query samples
each class are used to build the query set in each epoch. Nine
classes are learned in each individual training task with 5
support samples from each class. In the evaluation phase, the
number of supports each class can be tuned between 5 and 10
samples each. We perform 100 iterations to obtain the average
accuracy on the test set.

The similarity measure of the Siamese network here is learnt
by a parametric dense layer, in the next two paragraphs we in-
troduce two other alternatives from the few-shot classification
task where a non-parametric distance metric-based learning is
used in the classification stage. These methods are more robust
against small difference in source and target domains, and thus
more generalized.

b) F2: Prototypical Few-Shot Classification Network:
Inspired by [10], we adopted the prototypical network as the
second method (F2) in the few-shot classification problem. In
comparison to the first few-shot method (F1) with Siamese
network, this network is non-parametric in the classifica-
tion stage. This approach is a feature metric-based learning
approach. Instead of transferring network parameters, this
learning approach is based on learning the similarity distance
between the feature embeddings from new target data to the
prototypes of the samples from the same setup. This method
is similar to a clustering-based method to find the k-nearest
neighbours used for the classification.

The negative log-likelihood (NLL) function is applied to the
negative euclidean distance of the embedding vectors to each
class center embeddings (prototype). The objective is to reduce
the NLL loss of the query output to the true classification
label. Adam optimizer is used to optimize the weights of the
ConvNet hyperparameters. A learning rate of 0.001 is used
to learn the hyperparameters. 500 Epochs were performed

to train 5-ways-10-shots classification tasks. 15 query images
each class are used to build the query set. In the evaluation
phase, the number of class recognition task has increased to
the total 9 classes. The number of supports from each class
is varied between 5 and 10 samples each. We perform 100
iterations to obtain the average accuracy on the test set.

The disadvantage of using euclidean measure to express
the similarity is that this measure is not bounded. In contrast
to Siamese network, there is non parametric learning after
the feature extraction ConvNet structure. The classification
is based on the k-nearest neighbour approach from the class
embedding centers. The last method uses the cosine similarity
measure which is a bounded metric.

c) F3: Local Descriptor Correlated Few-Shot Classifica-
tion Network: The third method of the few-shot classification
(F3) is inspired by Li [21]. The author introduced a new dis-
tance metric to label the query sample. Instead of using image-
level feature based measure, they introduced a local descriptor
based image-to-class measure. We think this architecture will
work on the 2D time-frequency spectrum, as this network is
sensitive to local features within a global context. In contrast
to object images, the Doppler spectrum contains less fine-
grained contextual information, but local features caused by
repetitive movements and micro-movements from limbs and
arms are clearly observable. In this paper, we examine the local
descriptor correlation from the structural information extracted
from the micro-Doppler range caused by different whole-body
activities.

The local features from the ConvNet output is correlated
with all other local descriptors of the support embeddings each
class using a cosine similarity. This provides a locally feature-
based image-to-class mapping. The advantage of the cosine
metric is because the cosine distance measures the pattern
similarity without being largely effected by the magnitude. The
objective is to reduce the cross entropy loss for this multiclass
classification problem. Adam optimizer with a learning rate of
0.001 is chosen. The parameters for the few-shot learning and
the batch-wise composition are the same as in the method F2
for the prototypical network.

In few-shot classification learning task, the training data can
be disjoint of the test data. We used the Lab-Data to build the
training tasks and used the subject development data as support
set and the testing data from the uncontrolled setup to evaluate
the model.

In this section, we introduced three methods from few-shot
learning: (F1) Siamese, (F2) ProtoNet, and (F3) LocalNet.
These methods are theoretically suitable to enhance the gen-
eralization for our use-case, since we want to mitigate the
retraining phase for similar tasks.

V. EVALUATION AND DISCUSSION

The database details are introduced in Section III. In this
section, we present and discuss the results of the proposed
approaches in comparison to the baseline. We aim to optimize
the trained model with Lab-Data under controlled condition to
be generalizable to individuals under the uncontrolled setups.



The results of the baseline model and models which require
adaptation with the Uncontrolled-Data during the training
phase are displayed in Table II.

A. Baseline results
Given the Lab-Data in the base training, the trained infer-

ence model does not generalize well on test data collected
under uncontrolled conditions, if not provided in the base
training. The stacked bidirectional LSTM network failed to
cope with data from real-world environments, as both data
distributions differ too much. According to the baseline result
provided in Table II, in most of the cases the accuracy
equals to a uniform distribution. The model performs no
better than random guessing on the Uncontrolled-Data. In
our application, the total number of classes is nine, random
guessing corresponds to an average accuracy of 1

9 = 11.1% .

B. Our proposed approaches
a) The results of using the domain adaptation (DA)

method: are depicted in Table II. Here we successively in-
creased the amount of target labels from the subject devel-
opment set to be included into the training to improve the
performance of the domain adaptation. Without including any
target labels, the network only minimizes the distribution of
the source and target embeddings in an unsupervised way. The
performance is only 10-20 percentage points better compared
to the baseline. By incorporating more label information from
the target domain, the knowledge transfer improves on the
target domain classification. With only 50 % of the target
labels, the results increased about 40 percentage points and
with 100 % of the labels, the results increased about two to
six folds in average.

b) Results of Few-shot Classification Networks: Here, we
evaluated three alternatives of the few-shot classification ap-
proach. These models typically do not need to retrain the pre-
trained inference model, as the tasks are disjoint. An overview
of the evaluation results is given in Table III. A general
tendency is that the classification accuracy increases at least 5
percentage points with increasing number of support samples
per class used in the evaluation. This is intuitive, due to an in-
creased reliability and an improved decision boundary related
to more support samples. The Siamese network (F1) provides
similar results compared to the prototypical network (F2),
as both network architectures work with euclidean similarity
scores on the sample-base. Their performances are increased
around 50 percentage points compared to the baseline model.
The image-to-class measure in the LocalNet (F3) performs the
best as depicted in Table III with an increase of two to six folds
in average compared to the baseline.

C. Discussion

The performance of activity recognition based on ultrasound
sensing using a mobile device is subject to many variables.
The same hardware applied under changed conditions for
the same person show variability in the signal strength. To
deploy a fixed application to real-world scenarios is therefore
not easy and often has to overcome some difficulties. In

many cases, the performance drops due to the dissimilarity in
both domains. To overcome this issue, we investigated several
methods in this paper. We provide a database collected under
various conditions to allow researchers perform experiments
on it to solve the problem of lack of generalization on
new individuals. The base data consists of Lab-Data under
controlled environment and same sensing device. Uncontrolled
setups from five different individuals are used to evaluate the
methods for finetuning on individual dataset.

Finetuning a base model on new domains requires suffi-
cient amount of labeled samples from the Uncontrolled-Data.
Otherwise, the model would overfit adopting on this small
data amount. However, labels are most difficult to acquire and
the individual labeling process might be error prone. In such
cases, domain adaption method can be leveraged, where no
label information of the target domain is required. Though,
such network could benefit from including a small amount of
the target labels in case both domains differ as investigated in
our use-cases.

Few-shot classification is suitable for adopting finetuning
on limited data without retraining. This method can cope
with individual hardware characteristics without modifying the
base training. By comparing knowledge extracted from support
samples of different categories, an unknown sample is able
to assign to the correct category under the assumption that
samples of similar categories are close in the embedding space.
As no feature adaptation from the target domain is applied, this
model requires both domains behave similarly.

To leverage few-shot classification, the user has to pre-label
a small amount of individual sessions before the model is
adopted to this user. These labels are used to classify the
new samples based on certain distance metrics. The developer
does not need to modify the feature extraction network to
individually adapt to each new user. In case of the domain
adaptation, the developer needs to modify the base feature
extraction according to the user data. It further assumes
the similarity of both domains in order to avoid negative
knowledge transfer.

VI. CONCLUSION

In this paper, we investigated different approaches to im-
prove the generalizability of pre-trained classification models
under controlled condition in uncontrolled real-world scenarios
based on a mobile application for workout exercise recogni-
tion. We first presented a database to enable us analysing this
problem and building novel solutions. This database allows
us to study the body motion in relation to Doppler profiles
from built-in hardware of different commercial smartphones.
The gap between the development setup and the real-world
scenarios, as we prove, often lead to performance drop and
bad usability. The reason can be manifold, as it could rely
on individual difference, hardware specifics or environmental
changes. Our database is built to overcome this gap.

We proposed two methods: domain adaptation and few-
shot classification, to resolve the issue of lack of model
generalizability. Our evaluations showed that the baseline



Method
Ratio of labels used
from Uncontrolled-Data P1 P2 P3 P4 P5

Baseline - 16.25 % 46.35 % 11.17 % 25.73 % 15.5 %
DA 0 % 35,20 % 37,80 % 20.14 % 57.67 % 38.04 %
DA 50 % 77.61 % 85.39 % 58.61 % 78.86 % 75.87 %
DA 100 % 87.13 % 98.14 % 84.10 % 76.92 % 96.85 %

TABLE II
THE ACCURACY RESULTS OF BASELINE METHOD AND METHODS WITH MODEL RETRAINING IS DEPICTED. THE TERM Pi INDICATES THE ID OF THE

PARTICIPANTS. ENABLING THE KNOWLEDGE FROM THE UNCONTROLLED-DATA TO MODIFY THE BASE FEATURE EXTRACTION INCREASES THE
PERFORMANCE ON INDIVIDUAL FINETUNING.

No. Method P1 P2 P3 P4 P5 P1 P2 P3 P4 P5
- Baseline 16.25 % 46.35 % 11.17 % 25.73 % 15.5 % - - - - -

5 support samples each class 10 support samples each class
F1 Siamese 65.53 % 83.77 % 72.81 % 65.61 % 68.33 % 69.69 % 90.07 % 75.65 % 69.08 % 72.56 %
F2 ProtoNet 67.06 % 79.9 % 67.85 % 77.54 % 65.92 % 74.18 % 88.59 % 69.31 % 87.88 % 70.80 %
F3 LocalNet 85.28 % 79.9 % 64.85 % 94.33 % 86.98 % 89.55 % 97.84 % 67.51 % 98.0 % 91.63 %

TABLE III
THE ACCURACY FOR THE THREE ALTERNATIVES OF FEW-SHOT CLASSIFICATION TASK IS SHOWN. THE NUMBER (5 OR 10) INDICATES THE NUMBER OF

SUPPORT SAMPLES EACH CLASS USED IN THE EVALUATION. THE TERM Pi INDICATES THE ID OF THE PARTICIPANTS. THE PERFORMANCE INCREASES IN
GENERAL WITH THE INCREASING NUMBER OF SUPPORTS. THE LOCALNET WITH THE COSINE SIMILARITY MEASURE OUTPERFORMS THE OTHER

METHODS, AS IT INCLUDES THE IMAGE-TO-CLASS FEATURE CORRELATION.

method fails when faced with realistic data. Our proposed
concept of using domain adaption without including the target
labels improved the baseline only by 10-20 percentage points
in most cases. However, this method benefits from including
target labels, as with increasing amount of target labels in the
training phase, the recognition performance increases by two
to six folds compared to the baseline. Our proposed solution
that is based on few-shot classification improved the accuracy
to the same range, however, without the effort of retraining.
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