Skip to main content

Soft Pseudo-labeling Semi-Supervised Learning Applied to Fine-Grained Visual Classification

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12664))

Included in the following conference series:

Abstract

Pseudo-labeling is a simple and well known strategy in Semi-Supervised Learning with neural networks. The method is equivalent to entropy minimization as the overlap of class probability distribution can be reduced minimizing the entropy for unlabeled data. In this paper we review the relationship between the two methods and evaluate their performance on Fine-Grained Visual Classification datasets. We include also the recent released iNaturalist-Aves that is specifically designed for Semi-Supervised Learning. Experimental results show that although in some cases supervised learning may still have better performance than the semi-supervised methods, Semi Supervised Learning shows effective results. Specifically, we observed that entropy-minimization slightly outperforms a recent proposed method based on pseudo-labeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Semi-Supervised iNaturalist-Aves Dataset: https://github.com/cvl-umass/semi-inat-2020.

References

  1. van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2019). https://doi.org/10.1007/s10994-019-05855-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Nartey, O.T., Yang, G., Wu, J., Asare, S.K.: Semi-supervised learning for fine-grained classification with self-training. IEEE Access 8, 2109–2121 (2019)

    Article  Google Scholar 

  3. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204 (2017)

    Google Scholar 

  4. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: Advances in Neural Information Processing Systems, pp. 529–536 (2005)

    Google Scholar 

  5. Lee, D.-H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: ICML: Workshop: Challenges in Representation Learning (WREPL), p. 2013. Atlanta, Georgia, USA (2013)

    Google Scholar 

  6. Wei, X.-S., Wu, J., Cui, Q.: Deep learning for fine-grained image analysis: a survey. arXiv preprint arXiv:1907.03069 (2019)

  7. Ge, W., Lin, X., Yu, Y.: Weakly supervised complementary parts models for fine-grained image classification from the bottom up. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3034–3043 (2019)

    Google Scholar 

  8. Korsch, D., Bodesheim, P., Denzler, J.: Classification-specific parts for improving fine-grained visual categorization. In: Fink, G.A., Frintrop, S., Jiang, X. (eds.) DAGM GCPR 2019. LNCS, vol. 11824, pp. 62–75. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33676-9_5

    Chapter  Google Scholar 

  9. Zhang, L., Huang, S., Liu, W., Tao, D.: Learning a mixture of granularity-specific experts for fine-grained categorization. In Proceedings of the IEEE International Conference on Computer Vision, pp. 8331–8340 (2019)

    Google Scholar 

  10. Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large scale fine-grained categorization and domain-specific transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4109–4118 (2018)

    Google Scholar 

  11. Touvron, H., Vedaldi, A., Douze, M., Jégou, H.: Fixing the train-test resolution discrepancy. In: Advances in Neural Information Processing Systems, pp. 8252–8262 (2019)

    Google Scholar 

  12. Krause, J., et al.: The unreasonable effectiveness of noisy data for fine-grained recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 301–320. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_19

    Chapter  Google Scholar 

  13. Lin, T.-Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1449–1457 (2015)

    Google Scholar 

  14. Simon, M., Rodner, E., Darrell, T., Denzler, J.: The whole is more than its parts? from explicit to implicit pose normalization. IEEE Trans. Pattern Anal. Mach. Intell. 42, 749–763 (2018)

    Article  Google Scholar 

  15. Zheng, H., Fu, J., Zha, Z.-J., Luo, J.: Learning deep bilinear transformation for fine-grained image representation. In: Advances in Neural Information Processing Systems, pp. 4277–4286 (2019)

    Google Scholar 

  16. Ngiam, J., Peng, D., Vasudevan, V., Kornblith, S., Le, Q.V., Pang, R.: Domain adaptive transfer learning with specialist models. arXiv preprint arXiv:1811.07056 (2018)

  17. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 843–852 (2017)

    Google Scholar 

  18. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4780–4789 (2019)

    Google Scholar 

  19. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale (2020)

    Google Scholar 

  20. Vaswani, A.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  21. Oliver, A., Odena, A., Raffel, C.A., Cubuk, E.D., Goodfellow, I.: Realistic evaluation of deep semi-supervised learning algorithms. In: Advances in Neural Information Processing Systems, pp. 3235–3246 (2018)

    Google Scholar 

  22. Miyato, T., Maeda, S., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Article  Google Scholar 

  23. Athiwaratkun, B., Finzi, M., Izmailov, P., Wilson, A.G.: There are many consistent explanations of unlabeled data: Why you should average. In: International Conference on Learning Representations (2018)

    Google Scholar 

  24. Krizhevsky, A., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  25. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  26. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  27. Zhai, X., Oliver, A., Kolesnikov, A., Beyer, L.: S4l: self-supervised semi-supervised learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1476–1485 (2019)

    Google Scholar 

  28. Yao, T., Pan, Y., Ngo, C.-W., Li, H., Mei, T.: Semi-supervised domain adaptation with subspace learning for visual recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2142–2150 (2015)

    Google Scholar 

  29. Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain adaptation via minimax entropy. In Proceedings of the IEEE International Conference on Computer Vision, pp. 8050–8058 (2019)

    Google Scholar 

  30. Pernici, F., Bruni, M., Del Bimbo, A.: Self-supervised on-line cumulative learning from video streams. Computer Vision and Image Understanding, pp. 102983 (2020)

    Google Scholar 

  31. Pernici, F., Del Bimbo, A.: Unsupervised incremental learning of deep descriptors from video streams. In: 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 477–482. IEEE (2017)

    Google Scholar 

  32. Lisanti, G., Masi, I., Pernici, F., Del Bimbo, A.: Continuous localization and mapping of a pan-tilt-zoom camera for wide area tracking. Mach. Vis. Appl. 27(7), 1071–1085 (2016)

    Article  Google Scholar 

  33. Salvagnini, P., et al.: Information theoretic sensor management for multi-target tracking with a single pan-tilt-zoom camera. In: IEEE Winter Conference on Applications of Computer Vision, pp. 893–900. IEEE (2014)

    Google Scholar 

  34. Berthelot,D., et al.: Mixmatch: a holistic approach to semi-supervised learning. In: Advances in Neural Information Processing Systems, pp. 5049–5059 (2019)

    Google Scholar 

  35. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. arXiv preprint arXiv:2001.07685 (2020)

  36. Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained visual classification of aircraft. arXiv preprint arXiv:1306.5151 (2013)

  37. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 554–561 (2013)

    Google Scholar 

  38. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset (2011)

    Google Scholar 

  39. Nilsback, M.-E., Zisserman, A.: Automated flower classification over a large number of classes. In: Indian Conference on Computer Vision, Graphics and Image Processing, December 2008

    Google Scholar 

  40. Khosla, A., Jayadevaprakash, N., Yao, B., Fei-Fei, L.: Novel dataset for fine-grained image categorization. In: First Workshop on Fine-Grained Visual Categorization, IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, June 2011

    Google Scholar 

  41. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning (2016)

    Google Scholar 

  42. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Mugnai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mugnai, D., Pernici, F., Turchini, F., Del Bimbo, A. (2021). Soft Pseudo-labeling Semi-Supervised Learning Applied to Fine-Grained Visual Classification. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12664. Springer, Cham. https://doi.org/10.1007/978-3-030-68799-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68799-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68798-4

  • Online ISBN: 978-3-030-68799-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics