Skip to main content

Two-Stage Classification Model for Feather Images Identification

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

The paper explores the usage of neural networks for bird species identification based on feathers image. The taxonomic identification of birds’ feather is widely used in aviation ornithology to analyze collisions with aircraft and develop methods to prevent them. This article presents a novel dataset consisting of 28,272 images of the plumage of 595 bird species. We compare models trained on four subsets from the initial dataset. We propose the method of identifying bird species based on YoloV4 and DenseNet models. The experimental estimation showed that the resulted method makes it possible to identify the bird based on the photograph of the single feather with an accuracy up to 81,03% for precise classification and with accuracy 97,09% for of the first five predictions of the classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soldatini, C., Georgalas, V., Torricelli, P., Albores-Barajas, Y.V.: An ecological approach to birdstrike risk analysis. Eur. J. Wildlife Res. 56(4), 623–632 (2010). ISSN 1612–4642

    Article  Google Scholar 

  2. Yang, R., Wu, X.B., Yan, P., Li, X.Q.: Using DNA barcodes to identify a bird involved in a birdstrike at a Chinese airport. Mol. Biol. Rep. 37(7), 3517–3523 (2010). ISSN 0301–4851

    Article  Google Scholar 

  3. Berg, T., Liu, J.X., Lee, S.W., Alexander, M.L., Jacobs, D.W., Belhumeur, P.N.: Birdsnap: large-scale fine-grained visual categorization of birds. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2014, pp. 2019–2026 (2014)

    Google Scholar 

  4. Fu, J.L., Zheng, H.L., Mei, T.: Look closer to see better: re-current attention convolutional neural network for fine-grained image recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4476–4484 (2017)

    Google Scholar 

  5. Araujo, V.M., Britto, A.S., Brun, A.L., Oliveira, L.E.S., Koerich, A.L.: Fine-grained hierarchical classification of plant leaf images using fusion of deep models 2018. In: IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI) 2018, pp. 4476–4484 (2018)

    Google Scholar 

  6. Yang, L.J., Luo, P., Loy, C.C., Tang, X.: A large-scale car dataset for fine-grained categorization and verification. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3973–3981 (2015)

    Google Scholar 

  7. Hou, S.H., Feng, Y.S., Wang, Z.L.: VegFru: a domain-specific dataset for fine-grained visual categorization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 541–549 (2017)

    Google Scholar 

  8. Dai, X.Y., Southall, B., Trinh, N., Matei, B.: Efficient fine-grained classification and part localization using one compact network. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW 2017), pp. 996–1004 (2017)

    Google Scholar 

  9. Zhao, B., Feng, J.S., Wu, X., Yan, S.C.: A survey on deep learning-based fine-grained object classification and semantic segmentation. Int. J. Autom. Comput. 14(2), 119–135 (2017)

    Article  Google Scholar 

  10. Priyadharshini, P., Thilagavathi, K.: Hyperspectral image classification using MLL and graph cut methods. In: Proceedings of 2016 Online International Conference on Green Engineering and Technologies (ICGET) (2016)

    Google Scholar 

  11. Pandey, M., Lazebnik, S.: Scene recognition and weakly supervised object localization with deformable part-based models. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1307–1314 (2011)

    Google Scholar 

  12. Silla, C.N., Freitas, A.A.: A survey of hierarchical classification across different application domains. Data Min. Knowl. Discov. 22(1–2), 31–72 (2011). ISSN 1384–5810

    Article  MathSciNet  Google Scholar 

  13. Krause, J., et al.: The unreasonable effectiveness of noisy data for fine-grained recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 301–320. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_19

    Chapter  Google Scholar 

  14. Mitchell, R.: Web Scraping with Python: Collecting Data from the Modern Web. O’Reilly Media, Sebastopol (2015)

    Google Scholar 

  15. Glumov, N.I., Myasnikov, V.V., Sergeev, V.V.: Detection and Recognition of Objects in Images. Samara University, Samara (2010). in Russian

    Google Scholar 

  16. Zhu, Q.F., Zheng, H.F., Wang, Y.B., Cao, Y.G., Guo, S.X.: Study on the evaluation method of sound phase cloud maps based on an improved YOLOv4 algorithm. Sensors 20(15) (2015). ISSN 1424–8220

    Google Scholar 

  17. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016, pp. 779–788 (2016)

    Google Scholar 

  18. Sarkar, D., Bali, R., Ghosh, T.: Hands-On Transfer Learning with Python. Packt Publishing, Birmingham (2018)

    Google Scholar 

  19. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. International Code of Zoological Nomenclature. London: I Natural History Museum (1999)

    Google Scholar 

  21. Huang, G., Liu, Z., Van Der Maaten, L.: Densely connected convolutional networks. In: 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), pp. 2261–2269 (2017)

    Google Scholar 

  22. Valev, K., Schumann, A., Sommer, L., Beyerer, J.: A systematic evaluation of recent deep learning architectures for fine-grained vehicle classification. In: Pattern Recognition and Tracking XXIX, vol. 10649 (2018)

    Google Scholar 

  23. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zis-serman, A.: The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Belko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belko, A., Dobratulin, K., Kunznetsov, A. (2021). Two-Stage Classification Model for Feather Images Identification. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12665. Springer, Cham. https://doi.org/10.1007/978-3-030-68821-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68821-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68820-2

  • Online ISBN: 978-3-030-68821-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics