Abstract
Recommending accurately pick-up area with sparse GPS data is valuable and still challenging to increase taxi drivers’ profits and reduce fuel consumption. In recent years, the recommendation approach based on matrix factorization has been proposed to deal with sparsity. However, it is not accurate enough due to the regardless of the interaction effect between features. Therefore, this paper proposes DeepFM-based taxi pick-up area recommendation. Firstly, the research area is divided into grid area of equal size, the pick-up point information is extracted from the original GPS trajectory data, the pick-up point information and POI data are mapped to the grid area, the corresponding grid attributes are calculated and the grid feature matrix is constructed; Then, DeepFM is used to mine the combined relationship between the grid features, combining spatial information to recommend the most suitable grid area for drivers; Finally, the performance evaluation is carried out using DiDi's public data. The experimental results show that this method can significantly improve the quality of the recommended results and is superior to some existing recommended methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhang, D., Sun, L., Li, B., et al.: Understanding taxi service strategies from taxi GPS traces. IEEE Trans. Intell. Transp. Syst. 16(1), 123–135 (2015)
Liao, Z., Zhang, J., Liu, Y., Xiao, H., Zhao, Y.: Fusing geographic information into latent factor model for pick-up region recommendation. In: 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shanghai, pp. 330–335 (2019)
Kong, X., Xia, F., Wang, J.: Time-location-relationship combined service recommendation based on taxi trajectory data. IEEE Trans. Ind. Inf. 13(3), 1202–1212 (2017)
Lian, D., Zhao, C., Xie, X.: GeoMF: joint geographical modeling and matrix factorization for point-of-interest recommendation. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 831–840 (2014)
Ling, C., Xu, J., Liu, J.: Integrating spatial and temporal contexts into a factorization model for POI recommendation. Int. J. Geograph. Inf. Sci. 32, 524–546 (2018)
Zhang, X., Liu, J., Cao, B., et al.: Web service recommendation via combining Doc2Vec-based functionality clustering and DeepFM-based score prediction. In: 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation, Australia, pp. 509–516 (2018)
Ji, Y., Li, X.: An efficient intrusion detection model based on DeepFM. In: 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), pp. 778–783 (2020)
Huang, J., Zhang, X., Fang, B.: CoStock: a DeepFM model for stock market prediction with attentional embeddings. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 778–783 (2020)
Guo, H., Tang, R., Ye, Y., et al.: DeepFM: a factorization-machine based neural network for CTR prediction. In: 2017 International Joint Conference on Artificial Intelligence, pp. 1725–1731 (2017)
Li, B., Zhang, D., Sun, L., et al.: Hunting or waiting? Discovering passenger-finding strategies from a large-scale real-world taxi dataset. In: 2011 IEEE International Conference on Managing Ubiquitous Communications and Service (MUCS), Seattle, United States, pp. 63–68 (2011)
Mu, B., Dai, M.: Recommend taxi pick-up hotspots based on density-based clustering. In: 2019 IEEE 2nd International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, pp. 176–181 (2019)
Huang, Z., Tang, J., Shan, G., et al.: An efficient passenger-hunting recommendation framework with multi-task deep learning. IEEE Internet Things J. 6(5), 7713–7721 (2019)
Liu, Y., Liu, J., Liao, Z., et al.: Recommending a personalized sequence of pick-up points. J. Comput. Sci. 28, 382–388 (2018)
Verma, T., Varakantham, P., Kraus, S., et al.: Augmenting decisions of taxi drivers through reinforcement learning for improving revenues. In: International Conference on Automated Planning & Scheduling (ICAPS), pp. 409–417 (2017)
Zou, Q., Xue, G., Luo, Y., Yu, J., Zhu, H.: A novel taxi dispatch system for smart city. In: Streitz, N., Stephanidis, C. (eds.) DAPI 2013. LNCS, vol. 8028, pp. 326–335. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39351-8_36
Jain, R., Garg, S., Gangal, S., et al.: TaxiScan: a scan statistics approach for detecting taxi demand hotspots. In: 2019 Twelfth International Conference on Contemporary Computing (IC3), Noida, India, pp. 1–6 (2019)
Hwang, R., Hsueh, Y., Chen, Y.: An effective taxi recommender system based on a spatiotemporal factor analysis model. Inf. Sci. 314, 28–40 (2015)
Zhang, L., Chen, C., Wang, Y., et al.: Exploiting taxi demand hotspots based on vehicular big data analytics. In: 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, pp. 1–5 (2016)
Tang, J., Jiang, H., Li, Z., et al.: A two-layer model for taxi customer searching behaviors using GPS trajectory data. IEEE Trans. Intell. Transp. Syst. 17(11), 3318–3324 (2016)
Liu, L., et al.: Research on taxi drivers’ passenger hotspot selecting patterns based on GPS data: a case study in Wuhan. In: 2017 4th International Conference on Transportation Information and Safety (ICTIS), pp. 432–441 (2017)
Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on Data Mining, Sydney, NSW, pp. 995–1000 (2010)
Huang, Z., Shan, G., Cheng, J., et al.: TRec: an efficient recommendation system for hunting passengers with deep neural networks. Neural Comput. Appl. 31(1), 209–222 (2018). https://doi.org/10.1007/s00521-018-3728-2
Wang, C., Zhu, Z., Zhang, Y., Su, F.: Recommendation efficiency and personalized improvement of user-based collaborative filtering algorithm. Mini-Micro Syst. 37(03), 428–432 (2016). (in Chinese)
Acknowledgments
This project was funded by the National Natural Science Foundation of China (41871320), Provincial and Municipal Joint Fund of Hunan Provincial Natural Science Foundation of China (2018JJ4052), Hunan Provincial Natural Science Foundation of China (2017JJ2081), the Key Project of Hunan Provincial Education Department (17A070, 19A172, 19A174), the Scientific Research Project of Hunan Education Department (19C0755).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, X., Liu, Y., Liao, Z., Zhao, Y. (2021). DeepFM-Based Taxi Pick-Up Area Recommendation. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12665. Springer, Cham. https://doi.org/10.1007/978-3-030-68821-9_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-68821-9_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68820-2
Online ISBN: 978-3-030-68821-9
eBook Packages: Computer ScienceComputer Science (R0)