Skip to main content

Tire Surface Segmentation in Infrared Imaging with Convolutional Neural Networks

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

Tire modeling is a fundamental task that experts must carry out to ensure optimal tire performance in terms of stability, grip, and fuel consumption. In addition to the major forces that act on the tire, the temperature changes that occur during test handling provide meaningful information for an accurate model. However, the analysis of the temperature in a rolling tire is not a trivial task due to the interactions of the tire and the pavement. A non-invasive technique, such as thermal infrared inspection, allows analyzing temperature changes on the surface of the tire under dynamic rolling conditions. Thus, the accurate segmentation of the tire is the first objective towards a better understanding of its performance. To this aim, we propose a novel approach that combines image processing techniques with convolutional neural networks. First, the handcrafted features extracted from the infrared images are used to build a dataset; then, a convolutional neural network is trained with the labeled images. Finally, the network makes predictions of the tire surface under different test conditions. The results have shown that our proposal achieves a segmentation accuracy \({>}\)0.98 and a validation error \({<}\)0.05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Büttner, F., Unterreiner, M., Bortolussi, P.: An effective method to identify thermodynamic tire characteristics through driving maneuvers. In: Bargende, M., Reuss, H.-C., Wiedemann, J. (eds.) 15. Internationales Stuttgarter Symposium. P, pp. 921–936. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-08844-6_62

    Chapter  Google Scholar 

  2. Calabrese, F., Bäcker, M., Gallrein, A.: Evaluation of different modeling approaches for the tire handling simulations – analysis and results. In: Pfeffer, P. (ed.) 6th International Munich Chassis Symposium 2015. P, pp. 749–773. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-09711-0_48

    Chapter  Google Scholar 

  3. Chan, L., Hosseini, M.S., Plataniotis, K.N.: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains. Int. J. Comput. Vis. 1–24 (2020). https://doi.org/10.1007/s11263-020-01373-4

  4. Chaurasia, A., Culurciello, E.: Linknet: exploiting encoder representations for efficient semantic segmentation. In: IEEE Visual Communications and Image Processing (VCIP), pp. 1–4 (2017)

    Google Scholar 

  5. Corollaro, A.: Essentiality of temperature management while modeling and analyzing tires contact forces. Ph.D. thesis, Universitá degli studi di Napoli Federico II (2014)

    Google Scholar 

  6. Dehghani, M., Severyn, A., Rothe, S., Kamps, J.: Avoiding your teacher’s mistakes: training neural networks with controlled weak supervision. arXiv preprint arXiv:1711.00313 (2017)

  7. Duarte, A., et al.: Segmentation algorithms for thermal images. Procedia Technology 16, 1560–1569 (2014)

    Article  Google Scholar 

  8. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Farroni, F., Giordano, D., Russo, M., Timpone, F.: TRT: thermo racing tyre a physical model to predict the tyre temperature distribution. Meccanica 49, 707–723 (2014)

    Article  MathSciNet  Google Scholar 

  10. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P., Garcia-Rodriguez, J.: A survey on deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. 70, 41–65 (2018)

    Article  Google Scholar 

  11. Gauci, J., et al.: Automated region extraction from thermal images for peripheral vascular disease monitoring. J. Healthc. Eng. 2018, 1–14 (2018)

    Article  Google Scholar 

  12. Gil, G., Park, J.: Physical handling tire model incorporating temperature and inflation pressure change effect. In: SAE Technical Paper. SAE International (2018)

    Google Scholar 

  13. Harsh, D., Shyrokau, B.: Tire model with temperature effects for formula SAE vehicle. Appl. Sci. 9(24), 5328 (2019)

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  15. Iqbal, H.: Harisiqbal88/plotneuralnet v1.0.0 (2018). https://doi.org/10.5281/zenodo.2526396

  16. Ivašić-Kos, M., Krišto, M., Pobar, M.: Human detection in thermal imaging using YOLO. In: Proceedings of the 2019 5th International Conference on Computer and Technology Applications. ICCTA 2019, Association for Computing Machinery, pp. 20–24 (2019)

    Google Scholar 

  17. Jangblad, M.: Object detection in infrared images using deep convolutional neural networks. Master’s thesis, Uppsala University (2018)

    Google Scholar 

  18. Lin, T., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2020)

    Article  Google Scholar 

  19. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  23. Singh, K., Sarvari, P., Petry, F., Khadraoui, D.: Application of machine learning & deep learning techniques in the context of use cases relevant for the tire industry. In: VDI Wissensforum, pp. 1–24 (2019–10)

    Google Scholar 

  24. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  25. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++:a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Nava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nava, R., Fehr, D., Petry, F., Tamisier, T. (2021). Tire Surface Segmentation in Infrared Imaging with Convolutional Neural Networks. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12665. Springer, Cham. https://doi.org/10.1007/978-3-030-68821-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68821-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68820-2

  • Online ISBN: 978-3-030-68821-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics