Abstract
Tire modeling is a fundamental task that experts must carry out to ensure optimal tire performance in terms of stability, grip, and fuel consumption. In addition to the major forces that act on the tire, the temperature changes that occur during test handling provide meaningful information for an accurate model. However, the analysis of the temperature in a rolling tire is not a trivial task due to the interactions of the tire and the pavement. A non-invasive technique, such as thermal infrared inspection, allows analyzing temperature changes on the surface of the tire under dynamic rolling conditions. Thus, the accurate segmentation of the tire is the first objective towards a better understanding of its performance. To this aim, we propose a novel approach that combines image processing techniques with convolutional neural networks. First, the handcrafted features extracted from the infrared images are used to build a dataset; then, a convolutional neural network is trained with the labeled images. Finally, the network makes predictions of the tire surface under different test conditions. The results have shown that our proposal achieves a segmentation accuracy \({>}\)0.98 and a validation error \({<}\)0.05.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Büttner, F., Unterreiner, M., Bortolussi, P.: An effective method to identify thermodynamic tire characteristics through driving maneuvers. In: Bargende, M., Reuss, H.-C., Wiedemann, J. (eds.) 15. Internationales Stuttgarter Symposium. P, pp. 921–936. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-08844-6_62
Calabrese, F., Bäcker, M., Gallrein, A.: Evaluation of different modeling approaches for the tire handling simulations – analysis and results. In: Pfeffer, P. (ed.) 6th International Munich Chassis Symposium 2015. P, pp. 749–773. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-09711-0_48
Chan, L., Hosseini, M.S., Plataniotis, K.N.: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains. Int. J. Comput. Vis. 1–24 (2020). https://doi.org/10.1007/s11263-020-01373-4
Chaurasia, A., Culurciello, E.: Linknet: exploiting encoder representations for efficient semantic segmentation. In: IEEE Visual Communications and Image Processing (VCIP), pp. 1–4 (2017)
Corollaro, A.: Essentiality of temperature management while modeling and analyzing tires contact forces. Ph.D. thesis, Universitá degli studi di Napoli Federico II (2014)
Dehghani, M., Severyn, A., Rothe, S., Kamps, J.: Avoiding your teacher’s mistakes: training neural networks with controlled weak supervision. arXiv preprint arXiv:1711.00313 (2017)
Duarte, A., et al.: Segmentation algorithms for thermal images. Procedia Technology 16, 1560–1569 (2014)
Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)
Farroni, F., Giordano, D., Russo, M., Timpone, F.: TRT: thermo racing tyre a physical model to predict the tyre temperature distribution. Meccanica 49, 707–723 (2014)
Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P., Garcia-Rodriguez, J.: A survey on deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. 70, 41–65 (2018)
Gauci, J., et al.: Automated region extraction from thermal images for peripheral vascular disease monitoring. J. Healthc. Eng. 2018, 1–14 (2018)
Gil, G., Park, J.: Physical handling tire model incorporating temperature and inflation pressure change effect. In: SAE Technical Paper. SAE International (2018)
Harsh, D., Shyrokau, B.: Tire model with temperature effects for formula SAE vehicle. Appl. Sci. 9(24), 5328 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
Iqbal, H.: Harisiqbal88/plotneuralnet v1.0.0 (2018). https://doi.org/10.5281/zenodo.2526396
Ivašić-Kos, M., Krišto, M., Pobar, M.: Human detection in thermal imaging using YOLO. In: Proceedings of the 2019 5th International Conference on Computer and Technology Applications. ICCTA 2019, Association for Computing Machinery, pp. 20–24 (2019)
Jangblad, M.: Object detection in infrared images using deep convolutional neural networks. Master’s thesis, Uppsala University (2018)
Lin, T., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2020)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Singh, K., Sarvari, P., Petry, F., Khadraoui, D.: Application of machine learning & deep learning techniques in the context of use cases relevant for the tire industry. In: VDI Wissensforum, pp. 1–24 (2019–10)
Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++:a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Nava, R., Fehr, D., Petry, F., Tamisier, T. (2021). Tire Surface Segmentation in Infrared Imaging with Convolutional Neural Networks. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12665. Springer, Cham. https://doi.org/10.1007/978-3-030-68821-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-68821-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68820-2
Online ISBN: 978-3-030-68821-9
eBook Packages: Computer ScienceComputer Science (R0)