Skip to main content

Cubic Permutation Polynomials-Based Block RLNC Algorithm in Wireless Networks

  • Conference paper
  • First Online:
Security, Privacy, and Anonymity in Computation, Communication, and Storage (SpaCCS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12382))

  • 923 Accesses

Abstract

Cubic permutation polynomials provide excellent coding performance and parallel access. Random linear network coding (RLNC) is an improved coding scheme for wireless channel communication and video data flow, which can improve the network throughput and network lifetime of wireless networks (WN). This paper study the characteristics of cubic permutation polynomials (CPP) and RLNC by increasing the amount of available data to the users through the encode nodes. The paper proposes a cubic permutation polynomials-based block RLNC algorithm in WNs (CPP-RLNC). CPP-RLNC algorithm can better control the decoding complexity of each received packet and restore the original data. The performance of the CPP-RLNC algorithm is studied using NS2 and evaluated in terms of the encoding overhead, decoding delay, packet loss probability and throughput when a packet is transmitted. The simulations result shows that the CPP-RLNC algorithm with our proposition can significantly improve the network throughput and encoding efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farooqi, M.Z., Tabassum, S.M., Rehmani, M.H., Saleem, Y.: A survey on network coding: from traditional wireless networks to emerging cognitive radio networks. J. Netw. Comput. Appl. 46, 166–181 (2014). https://doi.org/10.1016/j.jnca.2014.09.002

    Article  Google Scholar 

  2. Song, Y., Luo, H.W., Pi, S.C., Gui, C., Sun, B.L.: Graph kernel based clustering algorithm in MANETs. IEEE Access 8(1), 107650–107660 (2020). https://doi.org/10.1109/ACCESS.2020.3001137

    Article  Google Scholar 

  3. Ho, T., Médard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J.: A random linear network coding approach to multicast. IEEE Trans. Inf. Theory 52(10), 4413–4430 (2006). https://doi.org/10.1109/TIT.2006.881746

    Article  MathSciNet  MATH  Google Scholar 

  4. Huang, C.L., Sun, B.L., Song, Y., Gui, C.: A quadratic permutation polynomials enhancement of a RLNC approach in MANETs. In: The 2019 6th International Conference on Systems and Informatics (ICSAI 2019), Shanghai, China, 2–4 November 2019, pp. 683–687 (2019). https://doi.org/10.1109/ICSAI48974.2019.9010353

  5. Chatzigeorgiou, I., Tassi, A.: Decoding delay performance of random linear network coding for broadcast. IEEE Trans. Veh. Technol. 66(8), 7050–7060 (2017). https://doi.org/10.1109/TVT.2017.2670178

    Article  Google Scholar 

  6. Douik, A., Sorour, S., Al-Naffouri, T.Y., Alouini, M.-S.: Instantly decodable network coding: from centralized to device-to-device communications. IEEE Commun. Surv. Tutorials 19(2), 1201–1224 (2017). https://doi.org/10.1109/COMST.2017.2665587

    Article  Google Scholar 

  7. Sun, B.L., Gui, C., Song, Y., Chen, H.: Network coding-based maximum lifetime algorithm for sliding window in WSNs. KSII Trans. Internet Inf. Syst. 13(3), 1298–1310 (2019). https://doi.org/10.3837/tiis.2019.03.010

    Article  Google Scholar 

  8. Feng, W.Y., Luo, H.W., Sun, B.L., Gui, C.: Performance analysis of sliding window network coding for energy efficient in MANETs. In: 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC 2017), Macau, China, July 21–23 2017, pp. 219–222 (2017). https://doi.org/10.1109/ICEIEC.2017.8076548

  9. Trifina, L., Tarniceriu, D.: Parallel access by butterfly networks for any degree permutation polynomial and ARP interleavers. J. Franklin Inst. 356, 3139–3168 (2019). https://doi.org/10.1016/j.jfranklin.2018.12.018

    Article  MathSciNet  MATH  Google Scholar 

  10. Nieminen, E.: On quadratic permutation polynomials, turbo codes, and butterfly networks. IEEE Trans. Inf. Theory 63(9), 5793–5801 (2017). https://doi.org/10.1109/TIT.2017.2717579

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, J., Zhang, K., Kröll, H., Wei, J.: Design of QPP interleavers for the parallel turbo decoding architecture. IEEE Trans. Circuits Syst. I Regul. Pap. 63(2), 288–299 (2016). https://doi.org/10.1109/TCSI.2015.2512715

    Article  MathSciNet  Google Scholar 

  12. Wu, G., Liang, L.P.: Construction of Block-LDPC codes based on quadratic permutation polynomials. J. Commun. Netw. 17(2), 157–161 (2015). https://doi.org/10.1109/JCN.2015.000029

    Article  MathSciNet  Google Scholar 

  13. Fu, L.X., Xie, Y.Y., Song, T.T., Su, Y., Chai, J.X., Ye, Y.C., Li, L.L.: Exploring reliable communication in optical networks-on-chip based on all-optical linear block codes encoder. J. Lightwave Technol. 37(16), 3963–3971 (2019). https://doi.org/10.1109/JLT.2019.2917210

    Article  Google Scholar 

  14. Trifina, L., Tarniceriu, D.: A simple method to determine the number of true different quadratic and cubic permutation polynomial based interleavers for turbo codes. Telecommun. Syst. 64(1), 147–171 (2016). https://doi.org/10.1007/s11235-016-0166-2

    Article  Google Scholar 

  15. Trifina, L., Tarniceriu, D.: On the Equivalence of cubic permutation polynomial and ARP interleavers for turbo codes. IEEE Trans. Commun. 65(2), 473–485 (2017). https://doi.org/10.1109/TCOMM.2016.2628744

    Article  Google Scholar 

  16. Ostovari, P., Wu, J., Khreishah, A., Shroff, N.B.: Scalable video streaming with helper nodes using random linear network coding. IEEE/ACM Trans. Networking 24(3), 1574–1587 (2016). https://doi.org/10.1109/TNET.2015.2427161

    Article  Google Scholar 

  17. Wunderlich, S., Cabrera, J.A., Fitzek, F.H.P., Reisslein, M.: Network coding in heterogeneous multicore IoT nodes with DAG scheduling of parallel matrix block operations. IEEE Internet Things J. 4(4), 917–933 (2017). https://doi.org/10.1109/JIOT.2017.2703813

    Article  Google Scholar 

  18. Yu, M., Sadeghi, P.: Approximating throughput and packet decoding delay in linear network coded wireless broadcast. In: 2018 IEEE Information Theory Workshop (ITW 2018), Guangzhou, China, 25–29 November (2018). https://doi.org/10.1109/ITW.2018.8613407

  19. Hu, H.F., Liu, M.Y., Yuan, D.M., Ran, J.: A block based encoding approach for improving sliding window network coding in wireless networks. In: 3rd IEEE International Conference on Computer and Communications (ICCC 2017), Chengdu, China, 13–16 December, pp. 300–304 (2017). https://doi.org/10.1109/CompComm.2017.8322560

  20. Waxman, B.: Routing of multipoint connections. IEEE J. Sel. Areas Commun. 6(9), 1617–1622 (1988). https://doi.org/10.1109/49.12889

    Article  Google Scholar 

  21. The Network Simulator - NS-2. https://www.isi.edu/nsnam/ns/

Download references

Acknowledgments

This work is supported by The National Natural Science Foundation of China (No. 61572012), The Key Natural Science Foundation of Hubei Province of China (No. 2018CFB661).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baolin Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, H., Feng, W., Sun, B., Song, Y. (2021). Cubic Permutation Polynomials-Based Block RLNC Algorithm in Wireless Networks. In: Wang, G., Chen, B., Li, W., Di Pietro, R., Yan, X., Han, H. (eds) Security, Privacy, and Anonymity in Computation, Communication, and Storage. SpaCCS 2020. Lecture Notes in Computer Science(), vol 12382. Springer, Cham. https://doi.org/10.1007/978-3-030-68851-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68851-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68850-9

  • Online ISBN: 978-3-030-68851-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics