Abstract
Deep reinforcement learning (DRL) aims to maximize long-term future rewards to achieve specific goals by learning polices based on deep learning models. However, existing research has found that machine learning models are vulnerable to maliciously craft adversarial examples, so does the DRL since it uses deep model to learn policies. Usually gradient information is adopted to generate adversarial perturbation on the clean observation states to fail DRL. In order to develop a novel attack method for further defect detection of DRL, we propose a novel attention mechanism based adversarial attack. Instead of gradient information, we make full use of hidden features extracted in the DRL by attention operations to generate more effective adversarial examples. Both channel attention and pixel attention are applied to extract feature to modify the clean state to an adversarial one. Deep Q-Learing Network (DQN), one of the state-of-the-art DRL models, is utilized as the target model to train Flappybird game environment to guarantee continuous running and high success rate. Comprehensive attack experiments are carried out on DQN to testify the attack performance in aspects of reward and loss convergence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)
Peters, M., Goltz, J., Wiedenmann, S., Mundt, T.: Using machine learning to find anomalies in field bus network traffic. In: Wang, G., Feng, J., Bhuiyan, M.Z.A., Lu, R. (eds.) SpaCCS 2019. LNCS, vol. 11611, pp. 336–353. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24907-6_26
Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)
Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: International Conference on Machine Learning, pp. 1928–1937 (2016)
Huang, S., Papernot, N., Goodfellow, I., Duan, Y., Abbeel, P.: Adversarial attacks on neural network policies. arXiv preprint arXiv:1702.02284 (2017)
Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., Mordatch, I.: Emergent complexity via multi-agent competition. arXiv preprint arXiv:1710.03748 (2017)
Bai, X., Niu, W., Liu, J., Gao, X., Xiang, Y., Liu, J.: Adversarial examples construction towards white-box Q table variation in DQN pathfinding training. In: 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC), pp. 781–787. IEEE (2018)
Chen, T., et al.: Gradient band-based adversarial training for generalized attack immunity of A3C path finding. arXiv preprint arXiv:1807.06752 (2018)
Inkawhich, M., Chen, Y., Li, H.: Snooping attacks on deep reinforcement learning. arXiv preprint arXiv:1905.11832 (2019)
Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy optimization. In: International Conference on Machine Learning, pp. 1889–1897 (2015)
Lin, Y.-C., Liu, M.-Y., Sun, M., Huang, J.-B.: Detecting adversarial attacks on neural network policies with visual foresight. arXiv preprint arXiv:1710.00814 (2017)
Behzadan, V., Munir, A.: Vulnerability of deep reinforcement learning to policy induction attacks. In: Perner, P. (ed.) MLDM 2017. LNCS (LNAI), vol. 10358, pp. 262–275. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62416-7_19
Liu, J., et al.: A method to effectively detect vulnerabilities on path planning of VIN. In: Qing, S., Mitchell, C., Chen, L., Liu, D. (eds.) ICICS 2017. LNCS, vol. 10631, pp. 374–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89500-0_33
Zhao, Y., Shumailov, I., Cui, H., Gao, X., Mullins, R., Anderson, R.: Blackbox attacks on reinforcement learning agents using approximated temporal information. arXiv preprint arXiv:1909.02918 (2019)
Ebeling-Rump, M., Kao, M., Hervieux-Moore, Z.: Applying q-learning to flappy bird. Department of Mathematics and Statistics, Queens University (2016)
Ma, K., Jiang, R., Dong, M., Jia, Y., Li, A.: Neural network based web log analysis for web intrusion detection. In: Wang, G., Atiquzzaman, M., Yan, Z., Choo, K.-K.R. (eds.) SpaCCS 2017. LNCS, vol. 10658, pp. 194–204. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72395-2_19
Yan, X., Cui, B., Li, J.: Malicious domain name recognition based on deep neural networks. In: Wang, G., Chen, J., Yang, L.T. (eds.) SpaCCS 2018. LNCS, vol. 11342, pp. 497–505. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05345-1_43
Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)
Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)
Kos, J., Song, D.: Delving into adversarial attacks on deep policies. arXiv preprint arXiv:1705.06452 (2017)
Lin, Y.-C., Hong, Z.-W., Liao, Y.-H., Shih, M.-L., Liu, M.-Y., Sun, M.: Tactics of adversarial attack on deep reinforcement learning agents. arXiv preprint arXiv:1703.06748 (2017)
Xiang, Y., Niu, W., Liu, J., Chen, T., Han, Z.: A PCA-based model to predict adversarial examples on q-learning of path finding. In: 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC), pp. 773–780. IEEE (2018)
Chatterjee, P., Yalchin, A., Shelton, J., Roy, K., Yuan, X., Edoh, K.D.: Presentation attack detection using wavelet transform and deep residual neural net. In: Wang, G., Feng, J., Bhuiyan, M.Z.A., Lu, R. (eds.) SpaCCS 2019. LNCS, vol. 11637, pp. 86–94. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24900-7_7
Tretschk, E., Oh, S.J., Fritz, M.: Sequential attacks on agents for long-term adversarial goals. arXiv preprint arXiv:1805.12487 (2018)
Russo, A., Proutiere, A.: Optimal attacks on reinforcement learning policies. arXiv preprint arXiv:1907.13548 (2019)
Gu, Z., Jia, Z., Choset, H.: Adversary A3C for robust reinforcement learning. arXiv preprint arXiv:1912.00330 (2019)
Fischer, M., Mirman, M., Vechev, M.: Online robustness training for deep reinforcement learning. arXiv preprint arXiv:1911.00887 (2019)
Behzadan, V., Munir, A.: Mitigation of policy manipulation attacks on deep q-networks with parameter-space noise. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11094, pp. 406–417. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99229-7_34
Havens, A., Jiang, Z., Sarkar, S.: Online robust policy learning in the presence of unknown adversaries. In: Advances in Neural Information Processing Systems, pp. 9916–9926 (2018)
Lee, X.Y., Havens, A., Chowdhary, G., Sarkar, S.: Learning to cope with adversarial attacks. arXiv preprint arXiv:1906.12061 (2019)
Lütjens, B., Everett, M., How, J.P.: Certified adversarial robustness for deep reinforcement learning. arXiv preprint arXiv:1910.12908 (2019)
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)
Dong, Y., et al.: Boosting adversarial attacks with momentum. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9185–9193 (2018)
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)
Acknowledgment
This research was supported by the National Natural Science Foundation of China under Grant No. 62072406, the Natural Science Foundation of Zhejiang Provincial under Grant No. LY19F020025, the Major Special Funding for “Science and Technology Innovation 2025” in Ningbo under Grant No. 2018B10063.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, J., Wang, X., Zhang, Y., Zheng, H., Ji, S. (2021). Attention Mechanism Based Adversarial Attack Against Deep Reinforcement Learning. In: Wang, G., Chen, B., Li, W., Di Pietro, R., Yan, X., Han, H. (eds) Security, Privacy, and Anonymity in Computation, Communication, and Storage. SpaCCS 2020. Lecture Notes in Computer Science(), vol 12382. Springer, Cham. https://doi.org/10.1007/978-3-030-68851-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-68851-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68850-9
Online ISBN: 978-3-030-68851-6
eBook Packages: Computer ScienceComputer Science (R0)