Skip to main content

Revisiting Attacks and Defenses in Connected and Autonomous Vehicles

  • Conference paper
  • First Online:
Security, Privacy, and Anonymity in Computation, Communication, and Storage (SpaCCS 2020)

Abstract

With the development of the automotive industry, the security of connected and autonomous vehicles (CAVs) has become a hot research field in recent years. However, previous studies mainly focus on the threats and defending mechanisms from the networking perspective, while newly emerging attacks are targeting the core component – AI of CAVs. Therefore, the defense methods against these attacks are urgently needed. In this paper, we revisit emerging attacks and their technical countermeasures for CAVs in a layered inventory, including in-vehicle systems, V2X, and self-driving. We believe that this survey provides insights on defending adversary attacks on CAVs and will shed light on the future research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelgader, A.M., Shu, F.: Exploiting the physical layer security for providing a simple user privacy security system for vehicular networks. In: International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE), pp. 1–6. IEEE (2017)

    Google Scholar 

  2. Alnasser, A., Sun, H., Jiang, J.: Cyber security challenges and solutions for V2X communications: a survey. Comput. Netw. 151, 52–67 (2019)

    Article  Google Scholar 

  3. Avatefipour, O., Malik, H.: State-of-the-art survey on in-vehicle network communication (CAN-Bus) security and vulnerabilities. arXiv preprint arXiv:1802.01725 (2018)

  4. Baluja, S., Fischer, I.: Adversarial transformation networks: learning to generate adversarial examples. arXiv preprint arXiv:1703.09387 (2017)

  5. Bhoi, S.K., Khilar, P.M.: SIR: a secure and intelligent routing protocol for vehicular ad hoc network. IET Netw. 4(3), 185–194 (2014)

    Article  Google Scholar 

  6. Bozdal, M., Samie, M., Jennions, I.: A survey on can bus protocol: attacks, challenges, and potential solutions. In: International Conference on Computing, Electronics & Communications Engineering (ICCECE), pp. 201–205. IEEE (2018)

    Google Scholar 

  7. Chen, S.-T., Cornelius, C., Martin, J., Chau, D.H.P.: ShapeShifter: robust physical adversarial attack on faster R-CNN object detector. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 52–68. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7_4

    Chapter  Google Scholar 

  8. Cho, K.T., Kim, Y., Shin, K.G.: Who killed my parked car? arXiv preprint arXiv:1801.07741 (2018)

  9. Cho, K.T., Shin, K.G.: Fingerprinting electronic control units for vehicle intrusion detection. In: USENIX Security Symposium (USENIX Security), pp. 911–927 (2016)

    Google Scholar 

  10. Cho, K.T., Shin, K.G.: Viden: attacker identification on in-vehicle networks. In: ACM SIGSAC Conference on Computer and Communications Security (CCS), pp. 1109–1123 (2017)

    Google Scholar 

  11. Choi, W., Joo, K., Jo, H.J., Park, M.C., Lee, D.H.: VoltageIDS: low-level communication characteristics for automotive intrusion detection system. IEEE Trans. Inf. Forensics Secur. (IEEE T INF FOREN SEC) 13(8), 2114–2129 (2018)

    Article  Google Scholar 

  12. Dagan, T., Wool, A.: Parrot, a software-only anti-spoofing defense system for the CAN bus. In: Embedded Security in Cars Europe (ESCAR), p. 34 (2016)

    Google Scholar 

  13. Deng, Y., Zheng, X., Zhang, T., Chen, C., Lou, G., Kim, M.: An analysis of adversarial attacks and defenses on autonomous driving models. arXiv Signal Processing (2020)

    Google Scholar 

  14. Francillon, A., Danev, B., Capkun, S.: Relay attacks on passive keyless entry and start systems in modern cars. In: Proceedings of the Network and Distributed System Security Symposium (NDSS) (2011)

    Google Scholar 

  15. Garcia, F.D., Oswald, D., Kasper, T., Pavlidès, P.: Lock it and still lose it -on the (in)security of automotive remote keyless entry systems. In: USENIX Security Symposium (USENIX Security) (2016)

    Google Scholar 

  16. Golle, P., Greene, D., Staddon, J.: Detecting and dorrecting malicious data in VANETs. In: ACM International Workshop on Vehicular Ad Hoc Networks (VANET), pp. 29–37 (2004)

    Google Scholar 

  17. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International Conference on Machine Learning (ICML) (2015)

    Google Scholar 

  18. Han, K., Weimerskirch, A., Shin, K.G.: A practical solution to achieve real-time performance in the automotive network by randomizing frame identifier. In: Embedded Security in Cars Europe (ESCAR), pp. 13–29 (2015)

    Google Scholar 

  19. Ishak, M.K., Leong, C.C., Sirajudin, E.A.: Embedded ethernet and controller area network (CAN) in real time control communication system. In: Zawawi, M.A.M., Teoh, S.S., Abdullah, N.B., Mohd Sazali, M.I.S. (eds.) 10th International Conference on Robotics, Vision, Signal Processing and Power Applications. LNEE, vol. 547, pp. 133–139. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6447-1_17

    Chapter  Google Scholar 

  20. Kneib, M., Huth, C.: Scission: signal characteristic-based sender identification and intrusion detection in automotive networks. In: ACM SIGSAC Conference on Computer and Communications Security (CCS), pp. 787–800 (2018)

    Google Scholar 

  21. Laurendeau, C., Barbeau, M.: Threats to security in DSRC/WAVE. In: Kunz, T., Ravi, S.S. (eds.) ADHOC-NOW 2006. LNCS, vol. 4104, pp. 266–279. Springer, Heidelberg (2006). https://doi.org/10.1007/11814764_22

    Chapter  Google Scholar 

  22. Li, Y., Bian, X., Lyu, S.: Attacking object detectors via imperceptible patches on background. Computing Research Repository (CoRR) (2018)

    Google Scholar 

  23. Li, Y., Tian, D., Bian, X., Lyu, S., et al.: Robust adversarial perturbation on deep proposal-based models. arXiv preprint arXiv:1809.05962 (2018)

  24. Lin, Y.C., Hong, Z.W., Liao, Y.H., Shih, M.L., Liu, M.Y., Sun, M.: Tactics of adversarial attack on deep reinforcement learning agents. arXiv preprint arXiv:1703.06748 (2017)

  25. Liu, X., Yang, H., Song, L., Li, H., Chen, Y.: DPatch: attacking object detectors with adversarial patches. Computing Research Repository (CoRR) (2018)

    Google Scholar 

  26. Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle. Black Hat USA 2015, 91 (2015)

    Google Scholar 

  27. Milton, M.A.A.: Evaluation of momentum diverse input iterative fast gradient sign method (M-DI2-FGSM) based attack method on MCS 2018 adversarial attacks on black box face recognition system. arXiv preprint arXiv:1806.08970 (2018)

  28. Mokhtar, B., Azab, M.: Survey on security issues in vehicular ad hoc networks. Alex. Eng. J. (AEJ) 54(4), 1115–1126 (2015)

    Article  Google Scholar 

  29. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1765–1773 (2017)

    Google Scholar 

  30. Nowdehi, N., Lautenbach, A., Olovsson, T.: In-vehicle CAN message authentication: an evaluation based on industrial criteria. In: IEEE Vehicular Technology Conference (VTC-Fall), pp. 1–7. IEEE (2017)

    Google Scholar 

  31. Palanca, A., Evenchick, E., Maggi, F., Zanero, S.: A stealth, selective, link-layer denial-of-service attack against automotive networks. In: Polychronakis, M., Meier, M. (eds.) DIMVA 2017. LNCS, vol. 10327, pp. 185–206. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60876-1_9

    Chapter  Google Scholar 

  32. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks. In: IEEE Symposium on Security and Privacy (S&P), pp. 582–597. IEEE (2016)

    Google Scholar 

  33. Petit, J., Stottelaar, B., Feiri, M., Kargl, F.: Remote attacks on automated vehicles sensors: experiments on camera and lidar. Black Hat Eur. 11, 2015 (2015)

    Google Scholar 

  34. Raiyn, J.: Data and cyber security in autonomous vehicle networks. Transp. Telecommun. J. 19(4), 325–334 (2018)

    Article  Google Scholar 

  35. Rouf, I., Miller, R.D., Mustafa, H.A., Taylor, T., Seskar, I.: Security and privacy vulnerabilities of in-car wireless networks: a tire pressure monitoring system case study. In: USENIX Security Symposium (USENIX Security) (2010)

    Google Scholar 

  36. Sagong, S.U., Poovendran, R., Bushnell, L.: Inter-message correlation for intrusion detection in controller area networks. Technical report, Washington University (2019)

    Google Scholar 

  37. Sagong, S.U., Ying, X., Poovendran, R., Bushnell, L.: Exploring attack surfaces of voltage-based intrusion detection systems in controller area networks. In: Embedded Security in Cars Europe (ESCAR) (2018)

    Google Scholar 

  38. Sitawarin, C., Bhagoji, A.N., Mosenia, A., Chiang, M., Mittal, P.: DARTS: deceiving autonomous cars with toxic signs. arXiv Cryptography and Security (2018)

    Google Scholar 

  39. Stewart, J.: Self-driving cars use crazy amounts of power, and it’s becoming a problem. wired.com, Transportation (2018)

    Google Scholar 

  40. Studnia, I., Alata, E., Nicomette, V., Kaâniche, M., Laarouchi, Y.: A language-based intrusion detection approach for automotive embedded networks. Int. J. Embed. Syst. (IJES) 10(1), 1–12 (2018)

    Article  Google Scholar 

  41. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks. IEEE Trans. Evolu. Comput. (TEVC) 23(5), 828–841 (2019)

    Article  Google Scholar 

  42. Sun, J., et al.: Stealthy and efficient adversarial attacks against deep reinforcement learning. arXiv preprint arXiv:2005.07099 (2020)

  43. Takahashi, J.: An overview of cyber security for connected vehicles. IEICE Trans. Inf. Syst. 101(11), 2561–2575 (2018)

    Article  Google Scholar 

  44. Wang, J., Shao, Y., Ge, Y., Yu, R.: A survey of vehicle to everything (V2X) testing. Sensors 19(2), 334 (2019)

    Article  Google Scholar 

  45. Wiyatno, R., Xu, A.: Maximal Jacobian-based saliency map attack. arXiv preprint arXiv:1808.07945 (2018)

  46. Wolf, M., Lambert, R., Enderle, T., Schmidt, A.: Wanna drive? Feasible attack paths and effective protection against ransomware in modern vehicles. In: Embedded Security in Cars Europe (ESCAR) (2017)

    Google Scholar 

  47. Yan, C., Xu, W., Liu, J.: Can you trust autonomous vehicles: contactless attacks against sensors of self-driving vehicle. DEFCON 24(8), 109 (2016)

    Google Scholar 

  48. Zang, S., Ding, M., Smith, D., Tyler, P., Rakotoarivelo, T., Kaafar, M.A.: The impact of adverse weather conditions on autonomous vehicles: how rain, snow, fog, and hail affect the performance of a self-driving car. IEEE Veh. Technol. Mag. 14(2), 103–111 (2019)

    Article  Google Scholar 

  49. Zhang, L.: OTIBAAGKA: a new security tool for cryptographic mix-zone establishment in vehicular ad hoc networks. IEEE Trans. Inf. Forensics Secur. 12(12), 2998–3010 (2017)

    Article  Google Scholar 

  50. Zhao, Y., Zhu, H., Liang, R., Shen, Q., Zhang, S., Chen, K.: Seeing isn’t believing: towards more robust adversarial attack against real world object detectors. In: ACM SIGSAC Conference on Computer and Communications Security (CCS), pp. 1989–2004 (2019)

    Google Scholar 

Download references

Acknowledgement

We sincerely thank reviewers for their insightful feedback. This work was supported in part by NSFC Award #61972200.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziyan Fang or Hao Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, Z., Zhang, W., Li, Z., Tang, H., Han, H., Xu, F. (2021). Revisiting Attacks and Defenses in Connected and Autonomous Vehicles. In: Wang, G., Chen, B., Li, W., Di Pietro, R., Yan, X., Han, H. (eds) Security, Privacy, and Anonymity in Computation, Communication, and Storage. SpaCCS 2020. Lecture Notes in Computer Science(), vol 12382. Springer, Cham. https://doi.org/10.1007/978-3-030-68851-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68851-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68850-9

  • Online ISBN: 978-3-030-68851-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics