Skip to main content

Explicit Factorization of Some Period Polynomials

  • Conference paper
  • First Online:
Arithmetic of Finite Fields (WAIFI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12542))

Included in the following conference series:

  • 646 Accesses

Abstract

Let p, t, q, n, m and r be positive integers, such that p is a prime number, \(q=p^t\), \(\gcd (q,n)=1\), \(m=\text{ ord}_n(q)\), and suppose that the prime factors of r divide n but not \((q^m-1)/n\), and that \(q^m \equiv 1 \pmod {4}\), if 4|r. Also let u such that \(u=\gcd (\frac{q^m-1}{q-1},\frac{q^m-1}{n})\). Assume that \(u=1\) or p is semiprimitive modulo u. Under these conditions, we are going to obtain the explicit factorization of the period polynomial of degree \(\gcd (\frac{q^{mr}-1}{q-1},\frac{q^{mr}-1}{nr})\) for the finite field \({\mathbb {F}}_{q^{mr}}\). In fact, we will see that such polynomial has always integer roots, meaning that the corresponding Gaussian periods are also integer numbers. As an application, we also determine the number of solutions of certain diagonal equations with constant exponent.

Partially supported by PAPIIT-UNAM IN109818.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baoulina, I.N.: On period polynomials of degree \(2^m\) and weight distributions of certain irreducible cyclic codes. Finite Fields Their Appl. 50, 319–337 (2018)

    Article  MathSciNet  Google Scholar 

  2. Berndt, B.C., Evans, R.J., Williams, K.S.: Gauss and Jacobi Sums. Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 21. Wiley, Hoboken (1998)

    MATH  Google Scholar 

  3. Delsarte, P.: On subfield subcodes of Reed-Solomon codes. IEEE Trans. Inform. Theory 21(5), 575–576 (1975)

    Article  MathSciNet  Google Scholar 

  4. Ding, C., Kohel, D., Ling, S.: Counting the number of points on affine diagonal curves. In: Lam, K.Y., Shparlinski, I., Wang, H., Xing, C. (eds.) Cryptography and Computational Number Theory. Progress in Computer Science and Applied Logic, vol. 20, pp. 15–24. Basel, Birkhäuser (2001). https://doi.org/10.1007/978-3-0348-8295-8_3

    Chapter  MATH  Google Scholar 

  5. Ding, C.: The weight distributions of some irreducible cyclic codes. IEEE Trans. Inform. Theory 55(3), 955–960 (2009)

    Article  MathSciNet  Google Scholar 

  6. Ding, C., Yang, J.: Hamming weights in irreducible cyclic codes. Discrete Math. 313, 434–446 (2013)

    Article  MathSciNet  Google Scholar 

  7. Gurak, S.: Period polynomials for \(\mathbb{F}_{p^2}\) of fixed small degree. In: Jungnickel, D., Niederreiter, H. (eds.) Finite Fields and Applications, pp. 196–207. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-56755-1_16

    Chapter  Google Scholar 

  8. Gurak, S. J.: Period polynomials for \(\mathbb{F}_q\) of fixed small degree. In: Number Theory. CRM Proceedings and Lecture Notes, vol. 36, pp. 127–145. American Mathematical Society (2004)

    Google Scholar 

  9. Hoshi, A.: Explicit lifts of quintic Jacobi sums and period polynomials for \(\mathbb{F}_q\). Proc. Jpn. Acad. Ser. A 82, 87–92 (2006)

    Article  Google Scholar 

  10. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1983)

    MATH  Google Scholar 

  11. Myerson, G.: Period polynomials and Gauss sums for finite fields. Acta Arith. 39, 251–264 (1981)

    Article  MathSciNet  Google Scholar 

  12. Schmidt, B., White, C.: All two-weight irreducible cyclic codes? Finite Fields Their Appl. 8, 1–17 (2002)

    Article  MathSciNet  Google Scholar 

  13. Sharma, A., Bakshi, G.K.: The weight distribution of some irreducible cyclic codes. Finite Fields Appl. 18(1), 144–159 (2012)

    Article  MathSciNet  Google Scholar 

  14. Vega, G.: A characterization of all semiprimitive irreducible cyclic codes in terms of their lengths. Appl. Algebra Eng. Commun. Comput. 30(5), 441–452 (2019). https://doi.org/10.1007/s00200-019-00385-z

    Article  MathSciNet  MATH  Google Scholar 

  15. Ward, R.L.: Weight enumerators of more irreducible cyclic binary codes. IEEE Trans. Inform. Theory 39(5), 1701–1709 (1993)

    Article  MathSciNet  Google Scholar 

  16. Wolfmann, J.: The number of solutions of certain diagonal equations over finite fields. J. Number Theory 42, 247–257 (1992)

    Article  MathSciNet  Google Scholar 

  17. Zeng, X., Fan, C., Zeng, Q., Qi, Y.: Two classes of binary cyclic codes and their weight distributions. Appl. Algebra Eng. Commun. Comput. (2019). https://doi.org/10.1007/s00200-019-00400-3

Download references

Acknowledgments

The author want to express his gratitude to the anonymous referees for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Vega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vega, G. (2021). Explicit Factorization of Some Period Polynomials. In: Bajard, J.C., Topuzoğlu, A. (eds) Arithmetic of Finite Fields. WAIFI 2020. Lecture Notes in Computer Science(), vol 12542. Springer, Cham. https://doi.org/10.1007/978-3-030-68869-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68869-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68868-4

  • Online ISBN: 978-3-030-68869-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics