Skip to main content

Existence and Cardinality of k-Normal Elements in Finite Fields

  • Conference paper
  • First Online:
Arithmetic of Finite Fields (WAIFI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12542))

Included in the following conference series:

Abstract

Normal bases in finite fields constitute a vast topic of large theoretical and practical interest. Recently, k-normal elements were introduced as a natural extension of normal elements. The existence and the number of k-normal elements in a fixed extension of a finite field are both open problems in full generality, and comprise a promising research avenue. In this paper, we first formulate a general lower bound for the number of k-normal elements, assuming that they exist. We further derive a new existence condition for k-normal elements using the general factorization of the polynomial \(x^m-1\) into cyclotomic polynomials. Finally, we provide an existence condition for normal elements in \({\mathbb {F}_{q^m}}\) with a non-maximal but high multiplicative order in the group of units of the finite field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ash, D.W., Blake, I.F., Vanstone, S.A.: Low complexity normal bases. Discret. Appl. Math. 25(3), 191–210 (1989). https://doi.org/10.1016/0166-218X(89)90001-2

    Article  MathSciNet  MATH  Google Scholar 

  2. Carlitz, L.: Primitive roots in a finite field. Trans. Am. Math. Soc. 73, 373–382 (1952). https://doi.org/10.2307/1990797

    Article  MathSciNet  MATH  Google Scholar 

  3. Cohen, S.D., Huczynska, S.: The strong primitive normal basis theorem. Acta Arith. 143(4), 299–332 (2010). https://doi.org/10.4064/aa143-4-1

  4. Davenport, H.: Bases for finite fields. J. Lond. Math. Soc. 43, 21–39 (1968). https://doi.org/10.1112/jlms/s1-43.1.21

    Article  MathSciNet  MATH  Google Scholar 

  5. Frandsen, G.S.: On the density of normal bases in finite fields. Finite Fields Appl. 6(1), 23–38 (2000). https://doi.org/10.1006/ffta.1999.0263

    Article  MathSciNet  MATH  Google Scholar 

  6. Gao, S.: Normal bases over finite fields. ProQuest LLC, Ann Arbor, MI, thesis (Ph.D.)-University of Waterloo (Canada) (1993)

    Google Scholar 

  7. Gao, S., Panario, D.: Density of normal elements. Finite Fields Appl. 3(2), 141–150 (1997). https://doi.org/10.1006/ffta.1996.0177

    Article  MathSciNet  MATH  Google Scholar 

  8. Hensel, K.: Ueber die Darstellung der Zahlen eines Gattungsbereiches für einen beliebigen Primdivisor. J. Reine Angew. Math. 103, 230–237 (1888). https://doi.org/10.1515/crll.1888.103.230

    Article  MathSciNet  MATH  Google Scholar 

  9. Huczynska, S., Mullen, G.L., Panario, D., Thomson, D.: Existence and properties of \(k\)-normal elements over finite fields. Finite Fields Appl. 24, 170–183 (2013). https://doi.org/10.1016/j.ffa.2013.07.004

    Article  MathSciNet  MATH  Google Scholar 

  10. Hyde, T.: Normal elements in finite fields. arXiv preprint arXiv:1809.02155 (2018)

  11. Kapetanakis, G.: Normal bases and primitive elements over finite fields. Finite Fields Appl. 26, 123–143 (2014). https://doi.org/10.1016/j.ffa.2013.12.002

    Article  MathSciNet  MATH  Google Scholar 

  12. Kapetanakis, G., Reis, L.: Variations of the primitive normal basis theorem. Des. Codes Crypt. 87(7), 1459–1480 (2018). https://doi.org/10.1007/s10623-018-0543-9

    Article  MathSciNet  MATH  Google Scholar 

  13. Lenstra Jr., H.W., Schoof, R.J.: Primitive normal bases for finite fields. Math. Comput. 48(177), 217–231 (1987). https://doi.org/10.2307/2007886

    Article  MathSciNet  MATH  Google Scholar 

  14. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Applications, 2nd edn, vol. 20. Cambridge University Press, Cambridge (1997). With a foreword by P. M. Cohn

    Google Scholar 

  15. Lüneburg, H.: Translation Planes. Springer, Heidelberg (2012). https://books.google.ch/books?id=UuTrCAAAQBAJ

  16. Menezes, A.J., Blake, I.F., Gao, X., Mullin, R.C., Vanstone, S.A., Yaghoobian, T.: Applications of Finite Fields. The Kluwer International Series in Engineering and Computer Science, vol. 199. Kluwer Academic Publishers, Boston (1993). https://doi.org/10.1007/978-1-4757-2226-0

  17. Mullen, G.L.: Some open problems arising from my recent finite research. In: Contemporary Developments in Finite Fields and Applications, pp. 254–269. World Sci. Publ., Hackensack (2016)

    Google Scholar 

  18. Ore, O.: Contributions to the theory of finite fields. Trans. Am. Math. Soc. 36(2), 243–274 (1934). https://doi.org/10.2307/1989836

    Article  MathSciNet  MATH  Google Scholar 

  19. Reis, L.: Existence results on \(k\)-normal elements over finite fields. Rev. Mat. Iberoam. 35(3), 805–822 (2019). https://doi.org/10.4171/rmi/1070

    Article  MathSciNet  MATH  Google Scholar 

  20. Reis, L., Thomson, D.: Existence of primitive 1-normal elements in finite fields. Finite Fields Appl. 51, 238–269 (2018). https://doi.org/10.1016/j.ffa.2018.02.002

    Article  MathSciNet  MATH  Google Scholar 

  21. Saygı, Z., Tilenbaev, E., Ürtiş, C.: On the number of \(k\)-normal elements over finite fields. Turkish J. Math. 43(2), 795–812 (2019). https://doi.org/10.3906/mat-1805-113

    Article  MathSciNet  MATH  Google Scholar 

  22. Sozaya-Chan, J.A., Tapia-Recillas, H.: On k-normal elements over finite fields. Finite Fields Appl. 52, 94–107 (2018). https://doi.org/10.1016/j.ffa.2018.03.006

    Article  MathSciNet  MATH  Google Scholar 

  23. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.6) (2020). https://www.sagemath.org

Download references

Acknowledgement

This work was partially supported by Swiss National Science Foundation grant no. 188430. The authors are also greatly thankful to Gianira Alfarano for her thorough proofreading and constructive feedback on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simran Tinani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tinani, S., Rosenthal, J. (2021). Existence and Cardinality of k-Normal Elements in Finite Fields. In: Bajard, J.C., Topuzoğlu, A. (eds) Arithmetic of Finite Fields. WAIFI 2020. Lecture Notes in Computer Science(), vol 12542. Springer, Cham. https://doi.org/10.1007/978-3-030-68869-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68869-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68868-4

  • Online ISBN: 978-3-030-68869-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics