Abstract
Normal bases in finite fields constitute a vast topic of large theoretical and practical interest. Recently, k-normal elements were introduced as a natural extension of normal elements. The existence and the number of k-normal elements in a fixed extension of a finite field are both open problems in full generality, and comprise a promising research avenue. In this paper, we first formulate a general lower bound for the number of k-normal elements, assuming that they exist. We further derive a new existence condition for k-normal elements using the general factorization of the polynomial \(x^m-1\) into cyclotomic polynomials. Finally, we provide an existence condition for normal elements in \({\mathbb {F}_{q^m}}\) with a non-maximal but high multiplicative order in the group of units of the finite field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ash, D.W., Blake, I.F., Vanstone, S.A.: Low complexity normal bases. Discret. Appl. Math. 25(3), 191–210 (1989). https://doi.org/10.1016/0166-218X(89)90001-2
Carlitz, L.: Primitive roots in a finite field. Trans. Am. Math. Soc. 73, 373–382 (1952). https://doi.org/10.2307/1990797
Cohen, S.D., Huczynska, S.: The strong primitive normal basis theorem. Acta Arith. 143(4), 299–332 (2010). https://doi.org/10.4064/aa143-4-1
Davenport, H.: Bases for finite fields. J. Lond. Math. Soc. 43, 21–39 (1968). https://doi.org/10.1112/jlms/s1-43.1.21
Frandsen, G.S.: On the density of normal bases in finite fields. Finite Fields Appl. 6(1), 23–38 (2000). https://doi.org/10.1006/ffta.1999.0263
Gao, S.: Normal bases over finite fields. ProQuest LLC, Ann Arbor, MI, thesis (Ph.D.)-University of Waterloo (Canada) (1993)
Gao, S., Panario, D.: Density of normal elements. Finite Fields Appl. 3(2), 141–150 (1997). https://doi.org/10.1006/ffta.1996.0177
Hensel, K.: Ueber die Darstellung der Zahlen eines Gattungsbereiches für einen beliebigen Primdivisor. J. Reine Angew. Math. 103, 230–237 (1888). https://doi.org/10.1515/crll.1888.103.230
Huczynska, S., Mullen, G.L., Panario, D., Thomson, D.: Existence and properties of \(k\)-normal elements over finite fields. Finite Fields Appl. 24, 170–183 (2013). https://doi.org/10.1016/j.ffa.2013.07.004
Hyde, T.: Normal elements in finite fields. arXiv preprint arXiv:1809.02155 (2018)
Kapetanakis, G.: Normal bases and primitive elements over finite fields. Finite Fields Appl. 26, 123–143 (2014). https://doi.org/10.1016/j.ffa.2013.12.002
Kapetanakis, G., Reis, L.: Variations of the primitive normal basis theorem. Des. Codes Crypt. 87(7), 1459–1480 (2018). https://doi.org/10.1007/s10623-018-0543-9
Lenstra Jr., H.W., Schoof, R.J.: Primitive normal bases for finite fields. Math. Comput. 48(177), 217–231 (1987). https://doi.org/10.2307/2007886
Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Applications, 2nd edn, vol. 20. Cambridge University Press, Cambridge (1997). With a foreword by P. M. Cohn
Lüneburg, H.: Translation Planes. Springer, Heidelberg (2012). https://books.google.ch/books?id=UuTrCAAAQBAJ
Menezes, A.J., Blake, I.F., Gao, X., Mullin, R.C., Vanstone, S.A., Yaghoobian, T.: Applications of Finite Fields. The Kluwer International Series in Engineering and Computer Science, vol. 199. Kluwer Academic Publishers, Boston (1993). https://doi.org/10.1007/978-1-4757-2226-0
Mullen, G.L.: Some open problems arising from my recent finite research. In: Contemporary Developments in Finite Fields and Applications, pp. 254–269. World Sci. Publ., Hackensack (2016)
Ore, O.: Contributions to the theory of finite fields. Trans. Am. Math. Soc. 36(2), 243–274 (1934). https://doi.org/10.2307/1989836
Reis, L.: Existence results on \(k\)-normal elements over finite fields. Rev. Mat. Iberoam. 35(3), 805–822 (2019). https://doi.org/10.4171/rmi/1070
Reis, L., Thomson, D.: Existence of primitive 1-normal elements in finite fields. Finite Fields Appl. 51, 238–269 (2018). https://doi.org/10.1016/j.ffa.2018.02.002
Saygı, Z., Tilenbaev, E., Ürtiş, C.: On the number of \(k\)-normal elements over finite fields. Turkish J. Math. 43(2), 795–812 (2019). https://doi.org/10.3906/mat-1805-113
Sozaya-Chan, J.A., Tapia-Recillas, H.: On k-normal elements over finite fields. Finite Fields Appl. 52, 94–107 (2018). https://doi.org/10.1016/j.ffa.2018.03.006
The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.6) (2020). https://www.sagemath.org
Acknowledgement
This work was partially supported by Swiss National Science Foundation grant no. 188430. The authors are also greatly thankful to Gianira Alfarano for her thorough proofreading and constructive feedback on this manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Tinani, S., Rosenthal, J. (2021). Existence and Cardinality of k-Normal Elements in Finite Fields. In: Bajard, J.C., Topuzoğlu, A. (eds) Arithmetic of Finite Fields. WAIFI 2020. Lecture Notes in Computer Science(), vol 12542. Springer, Cham. https://doi.org/10.1007/978-3-030-68869-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-68869-1_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68868-4
Online ISBN: 978-3-030-68869-1
eBook Packages: Computer ScienceComputer Science (R0)