Skip to main content

Linearized Polynomials and Their Adjoints, and Some Connections to Linear Sets and Semifields

  • Conference paper
  • First Online:
Arithmetic of Finite Fields (WAIFI 2020)

Abstract

Throughout this paper we let p be a prime number, let \(q=p^r\) and let \(\mathbb {F}_{q^n}\) denote a finite field with \(q^n\) elements, where n is a positive integer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ball, S., Ebert, G., Lavrauw, M.: A geometric construction of finite semifields. J. Algebra 311, 117–129 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bartoli, D., Giulietti, M., Marino, G., Polverino, O.: Maximum scattered linear sets and complete caps in Galois spaces. Combinatorica 38, 255–278 (2018)

    Article  MathSciNet  Google Scholar 

  3. Csajbók, B., Marino, G., Polverino, O.: A Carlitz type result for linearized polynomials. Ars Math. Contemp. 16(2), 585–608 (2019)

    Article  MathSciNet  Google Scholar 

  4. Csajbók, B., Marino, G., Polverino, O.: Classes and equivalence of linear sets in PG\((1, q^n)\). J. Comb. Theory Ser. A 157, 402–426 (2018)

    Article  Google Scholar 

  5. Csajbók, B., Zanella, C.: On the equivalence of linear sets. Des. Codes Cryptogr. 81, 269–281 (2016)

    Article  MathSciNet  Google Scholar 

  6. Lavrauw, M., Sheekey, J.: The BEL-rank of finite semifields. Des. Codes Cryptogr. 84, 345–358 (2017)

    Article  MathSciNet  Google Scholar 

  7. Sheekey, J., Van de Voorde, G.: Rank-metric codes, linear sets, and their duality. Des. Codes Cryptogr. 88, 655–675 (2020)

    Article  MathSciNet  Google Scholar 

  8. Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley (1983)

    Google Scholar 

  9. Zini, G., Zullo, F.: On the intersection problem for linear sets in the projective line. arXiv:2004.09441

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Sheekey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McGuire, G., Sheekey, J. (2021). Linearized Polynomials and Their Adjoints, and Some Connections to Linear Sets and Semifields. In: Bajard, J.C., TopuzoÄŸlu, A. (eds) Arithmetic of Finite Fields. WAIFI 2020. Lecture Notes in Computer Science(), vol 12542. Springer, Cham. https://doi.org/10.1007/978-3-030-68869-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68869-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68868-4

  • Online ISBN: 978-3-030-68869-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics