Skip to main content

Trisymmetric Multiplication Formulae in Finite Fields

  • Conference paper
  • First Online:
Arithmetic of Finite Fields (WAIFI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12542))

Included in the following conference series:

  • 647 Accesses

Abstract

Multiplication is an expensive arithmetic operation, therefore there has been extensive research to find Karatsuba-like formulae reducing the number of multiplications involved when computing a bilinear map. The minimal number of multiplications in such formulae is called the bilinear complexity, and it is also of theoretical interest to asymptotically understand it. Moreover, when the bilinear maps admit some kind of invariance, it is also desirable to find formulae keeping the same invariance. In this work, we study trisymmetric, hypersymmetric, and Galois invariant multiplication formulae over finite fields, and we give an algorithm to find such formulae. We also generalize the result that the bilinear complexity and symmetric bilinear complexity of the two-variable multiplication in an extension field are linear in the degree of the extension, to trisymmetric bilinear complexity, and to the complexity of t-variable multiplication for any \(t\ge 3\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/erou/TriSym.jl.

References

  1. Julia: a high-level, high-performance dynamic language for technical computing. http://julialang.org

  2. Ballet, S., Chaumine, J., Pieltant, J., Rambaud, M., Randriambololona, H., Rolland, R.: On the tensor rank of multiplication in finite extensions of finite fields and related issues in algebraic geometry. Russian Math. Surv. (to appear)

    Google Scholar 

  3. Ballet, S.: Curves with many points and multiplication complexity in any extension of \(\mathbb{F}_q\). Finite Fields Appl. 5, 364–377 (1999)

    Article  MathSciNet  Google Scholar 

  4. Ballet, S., Rolland, R.: Multiplication algorithm in a finite field and tensor rank of the multiplication. J. Algebra 272, 173–185 (2004)

    Article  MathSciNet  Google Scholar 

  5. Barbulescu, R., Detrey, J., Estibals, N., Zimmermann, P.: Finding optimal formulae for bilinear maps. In: Özbudak, F., Rodríguez-Henríquez, F. (eds.) WAIFI 2012. LNCS, vol. 7369, pp. 168–186. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31662-3_12

    Chapter  Google Scholar 

  6. Bassa, A., Beelen, P., Rambaud, M., Randriam, H.: In preparation

    Google Scholar 

  7. Bshouty, N.H.: Multilinear complexity is equivalent to optimal tester size. Electron. Colloquium Comput. Complexity 20, 11 (2013)

    Google Scholar 

  8. Cascudo, I., Cramer, R., Xing, C., Yang, A.: Asymptotic bound for multiplication complexity in the extensions of small finite fields. IEEE Trans. Inf. Theory 58(7), 4930–4935 (2012)

    Article  MathSciNet  Google Scholar 

  9. Chudnovsky, D.V., Chudnovsky, G.V.: Algebraic complexities and algebraic curves over finite fields. J. Complexity 4(4), 285–316 (1988)

    Article  MathSciNet  Google Scholar 

  10. Covanov, S.: Improved method for finding optimal formulas for bilinear maps in a finite field. Theoret. Comput. Sci. (2019)

    Google Scholar 

  11. Karatsuba, A.: Multiplication of multidigit numbers on automata. Soviet Physics Doklady 7, 595–596 (1963)

    Google Scholar 

  12. Randriambololona, H.: Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method. J. Complexity 28(4), 489–517 (2012)

    Article  MathSciNet  Google Scholar 

  13. Randriambololona, H.: \((2,1)\)-separating systems beyond the probabilistic bound. Israel J. Math. 195(1), 171–186 (2013)

    Article  MathSciNet  Google Scholar 

  14. Randriambololona, H.: On products and powers of linear codes under componentwise multiplication. In: Algorithmic Arithmetic, Geometry, and Coding Theory, Contemporary Mathematics, vol. 637, pp. 3–78. AMS (2015)

    Google Scholar 

  15. Randriam, H.: Gaps between prime numbers and tensor rank of multiplication in finite fields. Des. Codes Cryptogr. 627–645 (2018). https://doi.org/10.1007/s10623-018-0584-0

  16. Seroussi, G., Lempel, A.: On symmetric algorithms for bilinear forms over finite fields. J. Algorithms 5, 327–344 (1984)

    Article  MathSciNet  Google Scholar 

  17. Shparlinski, I.E., Tsfasman, M.A., Vladut, S.G.: Curves with many points and multiplication in finite fields. In: Stichtenoth, H., Tsfasman, M.A. (eds.) Coding Theory and Algebraic Geometry. LNM, vol. 1518, pp. 145–169. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0087999

    Chapter  MATH  Google Scholar 

  18. Henning Stichtenoth. Algebraic Function Fields and Codes, vol. 254. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-76878-4

  19. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13(4), 354–356 (1969)

    Article  MathSciNet  Google Scholar 

  20. Winograd, S.: On multiplication of \(2\times 2\) matrices. Linear Algebra Appl. 4, 381–388 (1971)

    Article  MathSciNet  Google Scholar 

  21. Winograd, S.: Some bilinear forms whose multiplicative complexity depends on the field of constants. Math. Syst. Theory 10, 169–180 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Édouard Rousseau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Randriambololona, H., Rousseau, É. (2021). Trisymmetric Multiplication Formulae in Finite Fields. In: Bajard, J.C., Topuzoğlu, A. (eds) Arithmetic of Finite Fields. WAIFI 2020. Lecture Notes in Computer Science(), vol 12542. Springer, Cham. https://doi.org/10.1007/978-3-030-68869-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68869-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68868-4

  • Online ISBN: 978-3-030-68869-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics