Skip to main content

A Construction of Self-dual Skew Cyclic and Negacyclic Codes of Length n over

  • Conference paper
  • First Online:
Arithmetic of Finite Fields (WAIFI 2020)

Abstract

The aim of this note is to give a construction and an enumeration of self-dual \(\theta \)-cyclic and \(\theta \)-negacyclic codes of length n over where p is a prime number and \(\theta \) is the Frobenius automorphism over . We use the notion of isodual codes to achieve this construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alahmadi, A., Alsulami, S., Hijazi, R., Solé, P.: Isodual cyclic codes over finite fields of odd characteristic. Discrete Math. 339(1), 344–353 (2016)

    Article  MathSciNet  Google Scholar 

  2. Batoul, A., Guenda, K., Gulliver, T.A.: Repeated-root isodual cyclic codes over finite fields. In: El Hajji, S., Nitaj, A., Carlet, C., Souidi, E.M. (eds.) C2SI 2015. LNCS, vol. 9084, pp. 119–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18681-8_10

    Chapter  MATH  Google Scholar 

  3. Batoul, A., Guenda, K., Kaya, A., Yildiz, B.: Cyclic isodual and formally self-dual codes over . Eur. J. Pure Appl. Math. 8(1), 64–80 (2015)

    Google Scholar 

  4. Boucher, D.: A note on the existence of self-dual skew codes over finite fields. In: El Hajji, S., Nitaj, A., Carlet, C., Souidi, E.M. (eds.) C2SI 2015. LNCS, vol. 9084, pp. 228–239. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18681-8_18

    Chapter  MATH  Google Scholar 

  5. Boucher, D.: Construction and number of self-dual skew codes over . Adv. Math. Commun. 10(4), 765–795 (2016)

    Google Scholar 

  6. Boucher, D.: Autour de codes définis à l’aide de polynômes tordus. Habilitation à diriger des recherches de l’Université Rennes 1, 2 juin 2020

    Google Scholar 

  7. Boucher, D., Ulmer, F.: Codes as modules over skew polynomial rings. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 38–55. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10868-6_3

    Chapter  MATH  Google Scholar 

  8. Boucher, D., Ulmer, F.: A note on the dual codes of module skew codes. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 230–243. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25516-8_14

    Chapter  Google Scholar 

  9. Boucher, D., Ulmer, F.: Linear codes using skew polynomials with automorphisms and derivations. Des. Codes Cryptogr. 70(3), 405–431 (2012). https://doi.org/10.1007/s10623-012-9704-4

    Article  MathSciNet  MATH  Google Scholar 

  10. Caruso, X., Le Borgne, J.: A new faster algorithm for factoring skew polynomials over finite fields. J. Symbolic Comput. 79(part 2), 411–443 (2017)

    Google Scholar 

  11. Delenclos, J., Leroy, A.: Noncommutative symmetric functions and \(W\)-polynomials. J. Algebra Appl. 6(5), 815–837 (2007)

    Article  MathSciNet  Google Scholar 

  12. Gabidulin, È.M.: Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21(1), 3–16 (1985)

    MathSciNet  MATH  Google Scholar 

  13. Jacobson, N.: The Theory of Rings. American Mathematical Society Mathematical Surveys, vol. II. American Mathematical Society, New York (1943)

    Google Scholar 

  14. Lam, T.Y., Leroy, A.: Vandermonde and Wronskian matrices over division rings. Bull. Soc. Math. Belg. Sér. A 40(2), 281–286 (1988). Deuxième Contact Franco-Belge en Algèbre (Faulx-les-Tombes, 1987)

    Google Scholar 

  15. Nebe, G., Willems, W.: On self-dual MRD codes. Adv. Math. Commun. 10(3), 633–642 (2016)

    Article  MathSciNet  Google Scholar 

  16. Ore, O.: Theory of Non-commutative Polynomials. Ann. Math. 34(3), 480–508 (1933)

    Google Scholar 

  17. Rains, E.M., Sloane, N.J.A.: Self-dual codes. In: Handbook of Coding Theory, vol. I, II, pp. 177–294. North-Holland, Amsterdam (1998)

    Google Scholar 

Download references

Acknowledgments

The authors thank the referees for their fruitful remarks. The second author is supported by the French government “Investissements d’Avenir” program ANR-11-LABX-0020-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Boucher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Batoul, A., Boucher, D., Boulanouar, R.D. (2021). A Construction of Self-dual Skew Cyclic and Negacyclic Codes of Length n over . In: Bajard, J.C., Topuzoğlu, A. (eds) Arithmetic of Finite Fields. WAIFI 2020. Lecture Notes in Computer Science(), vol 12542. Springer, Cham. https://doi.org/10.1007/978-3-030-68869-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68869-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68868-4

  • Online ISBN: 978-3-030-68869-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics