Abstract
We deal with two problems related with the use of the Sakata’s algorithm in a specific class of bivariate codes (see [2, 8, 9]). The first one is to improve the general framework of locator decoding in order to apply it on such abelian codes. The second one is to find sufficient conditions to guarantee that the minimal set of polynomials given by the algorithm is exactly a Groebner basis of the locator ideal.
This work was partially supported by MINECO, project MTM2016-77445-P, and Fundación Séneca of Murcia, project 19880/GERM/15.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bernal, J.J., Bueno-Carreño, D.H., Simón, J.J.: Apparent distance and a notion of BCH multivariate codes. IEEE Trans. Inf. Theory 62(2), 655–668 (2016)
Blahut, R.E.: Decoding of cyclic codes and codes on curves. In: Huffman, W.C., Pless, V. (eds.) Handbook of Coding Theory, vol. II, pp. 1569–1633 (1998)
Camion, P.: Abelian codes. MCR Tech. Sum. Rep. 1059, University of Wisconsin, Madison (1970)
Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-41154-4
Hackl, M.: Multivariate polynomial codes. Johannes-Kepler-University (2000)
Imai, H.: A theory of two-dimensional cyclic codes. Inf. Control 34(1), 1–21 (1977)
Rubio, I.M., Sweedler, M., Heegard, C.: Finding a Gröbner basis for the ideal of recurrence relations on m-dimensional periodic arrays. In: 12th International Conference on Finite Fields and Their Applications, Contemporary Developments in Finite Fields and Applications, pp. 296–320. World Scientific (2016)
Sakata, S.: Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array. J. Symb. Comput. 5, 321–337 (1988)
Sakata, S.: Decoding binary cyclic 2-D codes by the 2-D Berlekamp-Massey algorithm. IEEE Trans. Inf. Theory 37(4), 1200–1203 (1991)
Sakata, S.: The BMS algorithm and decoding of AG codes. In: Sala, M., Sakata, S., Mora, T., Traverso, C., Perret, L. (eds.) Gröbner Basis, Coding, and Cryptography, pp. 165–185. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-93806-4_10
Sakata, S.: The BMS Algorithm. In: Sala, M., Sakata, S., Mora, T., Traverso, C., Perret, L. (eds.) Gröbner Basis, Coding, and Cryptography, pp. 143–163. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-93806-4_9
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Bernal, J.J., Simón, J.J. (2021). Decoding up to 4 Errors in Hyperbolic-Like Abelian Codes by the Sakata Algorithm. In: Bajard, J.C., Topuzoğlu, A. (eds) Arithmetic of Finite Fields. WAIFI 2020. Lecture Notes in Computer Science(), vol 12542. Springer, Cham. https://doi.org/10.1007/978-3-030-68869-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-68869-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68868-4
Online ISBN: 978-3-030-68869-1
eBook Packages: Computer ScienceComputer Science (R0)