Abstract
Dihedral codes, particular cases of quasi-cyclic codes, have a nice algebraic structure which allows to store them efficiently. In this paper, we investigate it and prove some lower bounds on their dimension and minimum distance, in analogy with the theory of BCH codes. This allows us to construct dihedral codes with prescribed minimum distance. In the binary case, we present some examples of optimal dihedral codes obtained by this construction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barbier, M., Chabot, C., Quintin, G.: On quasi-cyclic codes as a generalization of cyclic codes. Finite Fields Appl. 18(5), 904–919 (2012)
Bazzi, L.M.J., Mitter, S.K.: Some randomized code constructions from group actions. IEEE Trans. Inform. Theory 52, 3210–3219 (2006)
Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-2_6
Berman, S.D.: On the theory of group codes. Kibernetika 3, 31–39 (1967)
Bernhardt, F., Landrock, P., Manz, O.: The extended Golay codes considered as ideals. J. Comb. Theory Ser. A 55, 235–246 (1990)
Borello, M., de la Cruz, J., Willems, W.: On checkable codes in group algebras arXiv: 1901.10979 (2019)
Borello, M., Willems, W.: Group codes over fields are asymptotically good. Finite Fields Appl. 68, 101738 (2020)
Borello, M., Willems, W.: On the algebraic structure of quasi group codes arXiv: 1912.09167 (2019)
Cao, Y., Cao, Y., Fu, F.W.: Concatenated structure of left dihedral codes. Finite Fields Appl. 38, 93–115 (2016)
Charpin, P.: Une généralisation de la construction de Berman des codes de Reed-Muller p-aire. Comm. Algebra 16, 2231–2246 (1988)
Claro, E.J.G., Recillas, H.T.: On the dimension of ideals in group algebras, and group codes. J. Algebra Appl. (2020, to appear)
Conway, J.H., Lomonaco Jr., S.J., Sloane, N.J.A.: A [45, 13] code with minimal distance 16. Discret. Math. 83, 213–217 (1990)
Elia, M., Gorla, E.: Computing the dimension of ideals in group algebras, with an application to coding theory. J. Algebra Numb. Theory Appl. 45(1), 13–28 (2020)
Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of McEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_14
vom Felde, A.: A new presentation of Cheng-Sloane’s \([32,17,8]\)-code. Arch. Math. 60, 508–511 (1993)
Güneri, C., Özdemir, F., Solé, P.: On the additive cyclic structure of quasi-cyclic codes. Discret. Math. 341(10), 2735–2741 (2018)
Grassl, M.: Codetables. http://www.codetables.de/
Huffman, W., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)
Jitman, S., Ling, S., Liu, H., Xie, X.: Checkable codes from group rings arXiv: 1012.5498v1 (2010)
McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN Progr. Rep. 42–44, 114–116 (1978)
McLoughlin, I., Hurley, T.: A group ring construction of the extended binary Golay code. IEEE Trans. Inform. Theory 54, 4381–4383 (2008)
Moree, P.: On the divisors of \(a^k+ b^k\). Acta Arith. 80(3), 197–212 (1997)
Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 6(150), 83–142 (1958)
Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob. Control Inf. Theory. Problemy Upravlenija i Teorii Informacii 15, 159–166 (1986)
Passman, D.S.: Observations on group rings. Comm. Algebra 5, 1119–1162 (1977)
Acknowledgements
The authors are grateful to G.N. Alfarano, P. Moree and A. Neri for the fruitful discussion about the paper. Moreover, they would like to thank all reviewers for their insightful comments which led to an improvement of the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Borello, M., Jamous, A. (2021). Dihedral Codes with Prescribed Minimum Distance. In: Bajard, J.C., Topuzoğlu, A. (eds) Arithmetic of Finite Fields. WAIFI 2020. Lecture Notes in Computer Science(), vol 12542. Springer, Cham. https://doi.org/10.1007/978-3-030-68869-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-68869-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68868-4
Online ISBN: 978-3-030-68869-1
eBook Packages: Computer ScienceComputer Science (R0)