Skip to main content

Dihedral Codes with Prescribed Minimum Distance

  • Conference paper
  • First Online:
Arithmetic of Finite Fields (WAIFI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12542))

Included in the following conference series:

  • 676 Accesses

Abstract

Dihedral codes, particular cases of quasi-cyclic codes, have a nice algebraic structure which allows to store them efficiently. In this paper, we investigate it and prove some lower bounds on their dimension and minimum distance, in analogy with the theory of BCH codes. This allows us to construct dihedral codes with prescribed minimum distance. In the binary case, we present some examples of optimal dihedral codes obtained by this construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barbier, M., Chabot, C., Quintin, G.: On quasi-cyclic codes as a generalization of cyclic codes. Finite Fields Appl. 18(5), 904–919 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bazzi, L.M.J., Mitter, S.K.: Some randomized code constructions from group actions. IEEE Trans. Inform. Theory 52, 3210–3219 (2006)

    Article  MathSciNet  Google Scholar 

  3. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-2_6

    Chapter  Google Scholar 

  4. Berman, S.D.: On the theory of group codes. Kibernetika 3, 31–39 (1967)

    MATH  Google Scholar 

  5. Bernhardt, F., Landrock, P., Manz, O.: The extended Golay codes considered as ideals. J. Comb. Theory Ser. A 55, 235–246 (1990)

    Article  MathSciNet  Google Scholar 

  6. Borello, M., de la Cruz, J., Willems, W.: On checkable codes in group algebras arXiv: 1901.10979 (2019)

  7. Borello, M., Willems, W.: Group codes over fields are asymptotically good. Finite Fields Appl. 68, 101738 (2020)

    Article  MathSciNet  Google Scholar 

  8. Borello, M., Willems, W.: On the algebraic structure of quasi group codes arXiv: 1912.09167 (2019)

  9. Cao, Y., Cao, Y., Fu, F.W.: Concatenated structure of left dihedral codes. Finite Fields Appl. 38, 93–115 (2016)

    Article  MathSciNet  Google Scholar 

  10. Charpin, P.: Une généralisation de la construction de Berman des codes de Reed-Muller p-aire. Comm. Algebra 16, 2231–2246 (1988)

    Article  MathSciNet  Google Scholar 

  11. Claro, E.J.G., Recillas, H.T.: On the dimension of ideals in group algebras, and group codes. J. Algebra Appl. (2020, to appear)

    Google Scholar 

  12. Conway, J.H., Lomonaco Jr., S.J., Sloane, N.J.A.: A [45, 13] code with minimal distance 16. Discret. Math. 83, 213–217 (1990)

    Article  MathSciNet  Google Scholar 

  13. Elia, M., Gorla, E.: Computing the dimension of ideals in group algebras, with an application to coding theory. J. Algebra Numb. Theory Appl. 45(1), 13–28 (2020)

    Google Scholar 

  14. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of McEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_14

    Chapter  Google Scholar 

  15. vom Felde, A.: A new presentation of Cheng-Sloane’s \([32,17,8]\)-code. Arch. Math. 60, 508–511 (1993)

    Article  MathSciNet  Google Scholar 

  16. Güneri, C., Özdemir, F., Solé, P.: On the additive cyclic structure of quasi-cyclic codes. Discret. Math. 341(10), 2735–2741 (2018)

    Article  MathSciNet  Google Scholar 

  17. Grassl, M.: Codetables. http://www.codetables.de/

  18. Huffman, W., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  19. Jitman, S., Ling, S., Liu, H., Xie, X.: Checkable codes from group rings arXiv: 1012.5498v1 (2010)

  20. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN Progr. Rep. 42–44, 114–116 (1978)

    Google Scholar 

  21. McLoughlin, I., Hurley, T.: A group ring construction of the extended binary Golay code. IEEE Trans. Inform. Theory 54, 4381–4383 (2008)

    Article  MathSciNet  Google Scholar 

  22. Moree, P.: On the divisors of \(a^k+ b^k\). Acta Arith. 80(3), 197–212 (1997)

    Article  MathSciNet  Google Scholar 

  23. Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 6(150), 83–142 (1958)

    MathSciNet  MATH  Google Scholar 

  24. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob. Control Inf. Theory. Problemy Upravlenija i Teorii Informacii 15, 159–166 (1986)

    MathSciNet  MATH  Google Scholar 

  25. Passman, D.S.: Observations on group rings. Comm. Algebra 5, 1119–1162 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to G.N. Alfarano, P. Moree and A. Neri for the fruitful discussion about the paper. Moreover, they would like to thank all reviewers for their insightful comments which led to an improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martino Borello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borello, M., Jamous, A. (2021). Dihedral Codes with Prescribed Minimum Distance. In: Bajard, J.C., Topuzoğlu, A. (eds) Arithmetic of Finite Fields. WAIFI 2020. Lecture Notes in Computer Science(), vol 12542. Springer, Cham. https://doi.org/10.1007/978-3-030-68869-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68869-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68868-4

  • Online ISBN: 978-3-030-68869-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics