Skip to main content

Recursion Polynomials of Unfolded Sequences

  • Conference paper
  • First Online:
Arithmetic of Finite Fields (WAIFI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12542))

Included in the following conference series:

  • 643 Accesses

Abstract

Watermarking digital media is one of the important challenges for information hiding. Not only the watermark must be resistant to noise and against attempts of modification, legitimate users should not be aware that it is embedded in the media. One of the techniques for watermarking is using an special variant of spread-spectrum technique, called frequency hopping. It requires ensembles of periodic binary sequences with low off-peak autocorrelation and cross-correlation. Unfortunately, they are quite rare and difficult to find. The small Kasami, Kamaletdinov, and Extended Rational Cycle constructions are versatile, because they can also be converted into Costas-like arrays for frequency hopping. We study the implementation of such ensembles using linear feedback shift registers. This permits an efficient generation of sequences and arrays in real time in FPGAs. Such an implementation requires minimal memory usage and permits dynamic updating of sequences or arrays.

The aim of our work was to broaden current knowledge of sets of sequences with low correlation studying their implementation using linear feedback shift registers. A remarkable feature of these families is their similarities in terms of implementation and it may open new way to characterize sequences with low correlation, making it easier to generate them. It also validates a conjecture made by Moreno and Tirkel about arrays constructed using the method of composition.

Supported by Consejería de Universidades e Investigación, Medio Ambiente y Política Social, Gobierno de Cantabria (ref. VP34).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Birdsall, T.G., Ristenbatt, M.P.: Introduction to linear shift-register generated sequences. Technical report, The University of Michigan (1958)

    Google Scholar 

  2. Brawley, J.V., Carlitz, L.: Irreducibles and the composed product for polynomials over a finite field. Discrete Math. 65(2), 115–139 (1987). https://doi.org/10.1016/0012-365X(87)90135-X

    Article  MathSciNet  MATH  Google Scholar 

  3. Ding, C., Hesseseth, T., Shan, W.: On the linear complexity of Legendre sequences. IEEE Trans. Inf. Theory 44(3), 1276–1278 (1998)

    Article  MathSciNet  Google Scholar 

  4. Elspas, B.: The theory of autonomous linear sequential networks. IRE Trans. Circ. Theory 6(1), 45–60 (1959)

    Article  Google Scholar 

  5. Games, R.A.: Crosscorrelation of M-sequences and GMW-sequences with the same primitive polynomial. Discrete Appl. Math. 12(2), 139–146 (1985). https://doi.org/10.1016/0166-218x(85)90067-8

    Article  MathSciNet  MATH  Google Scholar 

  6. Golomb, S.W., Gong, G.: Signal Design For Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  7. Gomez-Perez, D., Høholdt, T., Moreno, O., Rubio, I.: Linear complexity for multidimensional arrays-a numerical invariant. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT 2015). IEEE (2015)

    Google Scholar 

  8. Gong, G.: Theory and applications of Q-ary interleaved sequences. IEEE Trans. Inf. Theory 41(2), 400–411 (1995)

    Article  MathSciNet  Google Scholar 

  9. Gyorfi, L., Massey, J.L., et al.: Constructions of binary constant-weight cyclic codes and cyclically permutable codes. IEEE Trans. Inf. Theory 38(3), 940–949 (1992)

    Article  MathSciNet  Google Scholar 

  10. Kamaletdinov, B.: Optimal sets of binary sequences. Probl. Peredachi Informatsii 32(2), 39–44 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Kasami, T.: Weight distribution formula for some class of cyclic codes. Coordinated Science Laboratory Report no. R-285 (1966)

    Google Scholar 

  12. Katzenbeisser, S., Petitcolas, F.: Information Hiding Techniques for Steganography and Digital Watermarking. Artech House, Norwood (2000)

    Google Scholar 

  13. Kim, J.H., Song, H.Y.: Trace representation of Legendre sequences. Des. Codes Crypt. 24(3), 343–348 (2001)

    Article  MathSciNet  Google Scholar 

  14. Leukhin, A., Tirkel, A.: Ensembles of sequences and arrays. In: 2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA), pp. 5–9. IEEE (2015)

    Google Scholar 

  15. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994). https://doi.org/10.1017/CBO9781139172769

    Book  MATH  Google Scholar 

  16. Tirkel, A., Gomez-Perez, D., Gomez, A.I.: Arrays composed from the extended rational cycle. Adv. Math. Commun. 11(2), 313–327 (2017)

    Article  MathSciNet  Google Scholar 

  17. Tirkel, A., Gomez-Perez, D., Gomez, A.I.: Large families of sequences for CDMA, frequency hopping, and UWB. Cryptogr. Commun. 12(1), 389–403 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Tirkel, A., Osborne, C., Hall, T.: Steganography-applications of coding theory. In: IEEE Information Theory Workshop, Svalbard, Norway, pp. 57–59 (1997)

    Google Scholar 

  19. Tirkel, A.Z., Hall, T.E.: Matrix construction using cyclic shifts of a column. In: Proceedings of the International Symposium on Information Theory, ISIT 2005, pp. 2050–2054. IEEE (2005)

    Google Scholar 

  20. Tuxanidy, A., Wang, Q.: Composed products and factors of cyclotomic polynomials over finite fields. Designs Codes Cryptogr. 69, 1–29 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingo Gomez-Perez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gomez, A.I., Gomez-Perez, D., Tirkel, A. (2021). Recursion Polynomials of Unfolded Sequences. In: Bajard, J.C., Topuzoğlu, A. (eds) Arithmetic of Finite Fields. WAIFI 2020. Lecture Notes in Computer Science(), vol 12542. Springer, Cham. https://doi.org/10.1007/978-3-030-68869-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68869-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68868-4

  • Online ISBN: 978-3-030-68869-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics