Skip to main content

NAS-WFPN: Neural Architecture Search Weighted Feature Pyramid Networks for Object Detection

  • Conference paper
  • First Online:
Security, Privacy, and Anonymity in Computation, Communication, and Storage (SpaCCS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12383))

Abstract

As we known, most of convolution neural architectures are manually designed. However, they cannot obtain the optimal structures. To address this problem, based on Weighted Feature Pyramid Networks (WFPN), in this paper, we use gaussian kernel to calculate the weight to design a novel method called the Neural Architecture Search Weighted Feature Pyramid Networks (i.e., NAS-WFPN). NAS-WFPN mainly consists of three parts (i.e., top-down pathway, bottom-up pathway and lateral connections) to fuse features across different scales. Experimental results show that NAS-WFPN achieves higher accuracy compared with the existing object detection methods. Specifically, NAS-WFPN increases accuracy by 2.3 AP compared to SSDLite with MobileNetV2 model and gets 49.1 AP, which exceeds NAS-FPN and Mask R-CNN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Z., Peng, C., Yu, G., et al.: Detnet: a backbone network for object detection. arXiv preprint arXiv:1804.06215 (2018)

  2. Lin, T.Y., Dollár, P., Girshick, R., et al.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), pp. 2117–2125 (2017)

    Google Scholar 

  3. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), pp. 770–778 (2016)

    Google Scholar 

  4. Huang, G., Liu, Z., Van Der Maaten, L., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), pp. 4700–4708 (2017)

    Google Scholar 

  5. He, K., Gkioxari, G., Dollár, P., et al.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV 2017), pp. 2961–2969 (2017)

    Google Scholar 

  6. Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV 2017), pp. 2980–2988 (2017)

    Google Scholar 

  7. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  8. Ghiasi, G., Lin, T.Y., Le, Q.V.: NAS-FPN: learning scalable feature pyramid architecture for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019), pp. 7036–7045 (2019)

    Google Scholar 

  9. Fu, C.Y., Liu, W., Ranga, A., et al.: DSSD: deconvolutional single shot detector. arXiv preprint arXiv:1701.06659 (2017)

  10. Kong, T., Sun, F., Huang, W., Liu, H.: Deep feature pyramid reconfiguration for object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 172–188. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_11

    Chapter  Google Scholar 

  11. Kong, T., Sun, F., Yao, A., et al.: Ron: reverse connection with objectness prior networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), pp. 5936–5944 (2017)

    Google Scholar 

  12. Kim, S.-W., Kook, H.-K., Sun, J.-Y., Kang, M.-C., Ko, S.-J.: Parallel feature pyramid network for object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 239–256. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_15

    Chapter  Google Scholar 

  13. Woo, S., Hwang, S., Kweon, I.S.: Stairnet: Top-down semantic aggregation for accurate one shot detection. In: IEEE Winter Conference on Applications of Computer Vision (WACV 2018), pp. 1093–1102 (2018)

    Google Scholar 

  14. Kim, Y., Kang, B.-N., Kim, D.: SAN: learning relationship between convolutional features for multi-scale object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 328–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_20

    Chapter  Google Scholar 

  15. Yu, F., Wang, D., Shelhamer, E., et al.: Deep layer aggregation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), pp. 2403–2412 (2018)

    Google Scholar 

  16. Zhang, S., Wen, L., Bian, X., et al.: Single-shot refinement neural network for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), pp. 4203–4212 (2018)

    Google Scholar 

  17. Zhou, P., Ni, B., Geng, C., et al.: Scale-transferrable object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), pp. 528–537 (2018)

    Google Scholar 

  18. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578, 2016.

  19. Sandler, M., Howard, A., Zhu, M., et al.: Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), pp. 4510–4520 (2018)

    Google Scholar 

  20. Real, E., Aggarwal, A., Huang, Y., et al.: Regularized evolution for image classifier architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI 2019), pp. 4780–4789 (2019)

    Google Scholar 

  21. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV 2015), pp. 1440–1448 (2015)

    Google Scholar 

  22. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61972093, and Grant 61702101, and in part by the Young and Middle-aged Teachers Education and Research Project in Fujian Province under Grant JAT170477.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riqing Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Xie, Z., Lai, T., Zhao, F., Xu, H., Chen, R. (2021). NAS-WFPN: Neural Architecture Search Weighted Feature Pyramid Networks for Object Detection. In: Wang, G., Chen, B., Li, W., Di Pietro, R., Yan, X., Han, H. (eds) Security, Privacy, and Anonymity in Computation, Communication, and Storage. SpaCCS 2020. Lecture Notes in Computer Science(), vol 12383. Springer, Cham. https://doi.org/10.1007/978-3-030-68884-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68884-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68883-7

  • Online ISBN: 978-3-030-68884-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics