Abstract
The fast-paced technological advancements of the last decades have led to digitizing an ever-increasing amount of information, processes, and activities. A wide range of new digital devices have made our lives easier, faster, and funnier, quickly becoming indispensable for both work and daily life. As a result, the digital realm has dramatically expanded its boundaries, replacing the physical world in several areas. Information warfare has found fertile ground to expand into this modernized electronic world, creating new scenarios and novel attacks on nations and citizens’ virtual perimeter. The economic sector plays an essential role in this context, widely affected and profoundly changed by recent technological advancements. For instance, the rapid rise of fintech systems, on the one hand, has led to the globalization of markets, with evident benefits on industries and tertiary services. On the other hand, the financial sector’s dependence on digital systems and information has increased dramatically, also introducing new digital risks. This paper explores the new threats opened up by the latest technological advancements to the national economy of a typical developed Country. After identifying two of the major targets of information warfare – cryptocurrencies and stock markets – we investigate possible attacks and evaluate their potential repercussions on the national economy, also highlighting promising avenues for future research and experimentation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
https://portail-ie.fr/resource/glossary/95/guerre-economique (Last checked December 2020).
- 2.
https://www.ege.fr/index.php/l-ecole/presentation/economic-warfare-school-of-paris.html (Last checked December 2020).
- 3.
- 4.
- 5.
References
Ali, I.M., Caprolu, M., Di Pietro, R.: Foundations, properties, and security applications of puzzles: a survey. ACM Comput. Surv. (CSUR) 53(4), 1–38 (2020)
Atkins, A., Niranjan, M., Gerding, E.: Financial news predicts stock market volatility better than close price. J. Fin. Data Sci. 4(2), 120–137 (2018)
Baron, M., Brogaard, J., Hagströmer, B., Kirilenko, A.: Risk and return in high-frequency trading. J. Fin. Quant. Anal. 54(3), 993–1024 (2019)
Bartoletti, M., Pes, B., Serusi, S.: Data mining for detecting bitcoin Ponzi schemes. In: The 1st Crypto Valley Conference on Blockchain Technology (CVCBT 2018), pp. 75–84. IEEE (2018)
Bellia, M., Christensen, K., Kolokolov, A., Pelizzon, L., Renò, R.: High-frequency trading during flash crashes: walk of fame or hall of shame? SAFE Working Paper (2020)
Bendiksen, C., Gibbons, S.: The bitcoin mining network - trends, composition, average creation cost, electricity consumption & sources. CoinShares Research, Whitepaper, December 2019
Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)
Brown, D.R.: Generic groups, collision resistance, and ECDSA. Des. Codes Crypt. 35(1), 119–152 (2005)
Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 355–371. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23822-2_20
Budish, E., Cramton, P., Shim, J.: The high-frequency trading arms race: frequent batch auctions as a market design response. Q. J. Econ. 130(4), 1547–1621 (2015)
Bujari, A., Furini, M., Laina, N.: On using cashtags to predict companies stock trends. In: Proceedings of the 14th IEEE Annual Consumer Communications & Networking Conference (CCNC 2017), pp. 25–28. IEEE (2017)
Chavoshi, N., Hamooni, H., Mueen, A.: DeBot: Twitter bot detection via warped correlation. In: The 16th International Conference on Data Mining (ICDM 2016), pp. 817–822. IEEE (2016)
Chesterman, S.: ‘Move fast and break things’: law, technology, and the problem of speed. NUS Law Working Paper (2020)
Cresci, S.: A decade of social bot detection. Commun. ACM 63(10), 72–83 (2020)
Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., Tesconi, M.: Social fingerprinting: detection of spambot groups through DNA-inspired behavioral modeling. IEEE Trans. Dependable Secure Comput. 15(4), 561–576 (2017)
Cresci, S., Lillo, F., Regoli, D., Tardelli, S., Tesconi, M.: \$FAKE: evidence of spam and bot activity in stock microblogs on Twitter. In: The 12th International AAAI Conference on Web and Social Media (ICWSM 2018), pp. 580–583. AAAI (2018)
Cresci, S., Lillo, F., Regoli, D., Tardelli, S., Tesconi, M.: Cashtag piggybacking: uncovering spam and bot activity in stock microblogs on twitter. ACM Trans. Web (TWEB) 13(2), 1–27 (2019)
Cresci, S., Petrocchi, M., Spognardi, A., Tognazzi, S.: From reaction to proaction: Unexplored ways to the detection of evolving spambots. In: Companion Proceedings of the Web Conference 2018 (WWW 2018), pp. 1469–1470 (2018)
Cresci, S., Petrocchi, M., Spognardi, A., Tognazzi, S.: Better safe than sorry: an adversarial approach to improve social bot detection. In: The 11th ACM Conference on Web Science (WebSci 2019), pp. 47–56 (2019)
Da San Martino, G., Cresci, S., Barrón-Cedeño, A., Yu, S., Di Pietro, R., Nakov, P.: A survey on computational propaganda detection. In: The 29th International Joint Conference on Artificial Intelligence (IJCAI 2020), pp. 4826–4832 (2020)
Das, S.R.: The future of fintech. Financ. Manage. 48(4), 981–1007 (2019)
Davis, M., Kumiega, A., Van Vliet, B.: Ethics, finance, and automation: a preliminary survey of problems in high frequency trading. Sci. Eng. Ethics 19(3), 851–874 (2013)
Di Pietro, R., Caprolu, M., Raponi, S.: Next generation information warfare: rationales, scenarios, threats, and open issues. In: Mori, P., Furnell, S., Camp, O. (eds.) ICISSP 2019. CCIS, vol. 1221, pp. 24–47. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49443-8_2
Di Pietro, R., Raponi, S., Caprolu, M., Cresci, S.: New Dimensions of Information Warfare, pp. 1–4. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-60618-3_1
Ding, X., Zhang, Y., Liu, T., Duan, J.: Deep learning for event-driven stock prediction. In: The 24th International Joint Conference on Artificial Intelligence (IJCAI 2015) (2015)
Evans, L., Owda, M., Crockett, K., Vilas, A.F.: Credibility assessment of financial stock tweets. Expert Syst. Appl. 168, 114351 (2020)
Ferrara, E.: Manipulation and abuse on social media. ACM SIGWEB Newsl. (Spring), 1–9 (2015)
Galeshchuk, S.: Technological bias at the exchange rate market. Intell. Syst. Account. Fin. Manage. 24(2–3), 80–86 (2017)
Glenski, M., Saldanha, E., Volkova, S.: Characterizing speed and scale of cryptocurrency discussion spread on reddit. In: The 28th International Conference on World Wide Web (WWW 2019), pp. 560–570 (2019)
Grahl, J., Lysandrou, P.: The European commission’s proposal for a financial transactions tax: a critical assessment. JCMS J. Common Market Stud. 52(2), 234–249 (2014)
Hasbrouck, J., Saar, G.: Low-latency trading. J. Financial Mark. 16(4), 646–679 (2013)
Hendershott, T., Riordan, R.: Algorithmic trading and the market for liquidity. J. Financial Quant. Anal. 48(4), 1001–1024 (2013)
Jiang, M., Cui, P., Beutel, A., Faloutsos, C., Yang, S.: Inferring lockstep behavior from connectivity pattern in large graphs. Knowl. Inf. Syst. 48(2), 399–428 (2016)
Kharratzadeh, M., Coates, M.: Weblog analysis for predicting correlations in stock price evolutions. In: The 6th International Conference on Web and Social Media (ICWSM 2012). AAAI (2012)
Kushner, D.: Sony vs. the hackers. IEEE Spectr. 48(5), 16 (2011)
Linton, O., Mahmoodzadeh, S.: Implications of high-frequency trading for security markets. Ann. Rev. Econ. 10, 237–259 (2018)
Lo, A.W.: The adaptive markets hypothesis. J. Portfolio Manage. 30(5), 15–29 (2004)
Mazza, M., Cresci, S., Avvenuti, M., Quattrociocchi, W., Tesconi, M.: RTbust: exploiting temporal patterns for botnet detection on twitter. In: The 11th International Conference on Web Science (WebSci 2019), pp. 183–192. ACM (2019)
Mendoza, M., Tesconi, M., Cresci, S.: Bots in social and interaction networks: detection and impact estimation. ACM Trans. Inf. Syst. (TOIS) 39(1), 1–32 (2020)
Menkveld, A.J.: High frequency trading and the new market makers. J. Financial Mark. 16(4), 712–740 (2013)
Michaelis, K., Meyer, C., Schwenk, J.: Randomly failed! the state of randomness in current java implementations. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 129–144. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36095-4_9
Mirtaheri, M., Abu-El-Haija, S., Morstatter, F., Steeg, G.V., Galstyan, A.: Identifying and analyzing cryptocurrency manipulations in social media. arXiv preprint arXiv:1902.03110 (2019)
Monaco, E.: What FinTech can learn from high-frequency trading: economic consequences, open issues and future of corporate disclosure. In: Lynn, T., Mooney, J.G., Rosati, P., Cummins, M. (eds.) Disrupting Finance. PSDBET, pp. 51–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-02330-0_4
Nassirtoussi, A.K., Aghabozorgi, S., Wah, T.Y., Ngo, D.C.L.: Text mining for market prediction: a systematic review. Expert Syst. Appl. 41(16), 7653–7670 (2014)
Neyret, A.: Stock market cybercrime. Technical report, Autorité des Marchés Financiers (AMF) (2020)
Nizzoli, L., Tardelli, S., Avvenuti, M., Cresci, S., Tesconi, M.: Coordinated behavior on social media in 2019 UK general election. arXiv preprint arXiv:2008.08370 (2020)
Nizzoli, L., Tardelli, S., Avvenuti, M., Cresci, S., Tesconi, M., Ferrara, E.: Charting the landscape of online cryptocurrency manipulation. IEEE Access 8, 113230–113245 (2020)
Pacheco, D., Hui, P.M., Torres-Lugo, C., Truong, B.T., Flammini, A., Menczer, F.: Uncovering coordinated networks on social media. arXiv preprint arXiv:2001.05658 (2020)
Rajesh, N., Gandy, L.: CashTagNN: using sentiment of tweets with CashTags to predict stock market prices. In: The 11th International Conference on Intelligent Systems: Theories and Applications (SITA 2016), pp. 1–4. IEEE (2016)
Schumaker, R.P., Chen, H.: Textual analysis of stock market prediction using breaking financial news: the AZFin text system. ACM Trans. Inf. Syst. (TOIS) 27(2), 1–19 (2009)
Sornette, D., von der Becke, S.: Crashes and high frequency trading: an evaluation of risks posed by high-speed algorithmic trading. The Future of Computer Trading in Financial Markets (2011)
Tardelli, S., Avvenuti, M., Tesconi, M., Cresci, S.: Characterizing social bots spreading financial disinformation. In: Meiselwitz, G. (ed.) HCII 2020. LNCS, vol. 12194, pp. 376–392. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49570-1_26
Vasek, M., Moore, T.: Analyzing the Bitcoin Ponzi scheme ecosystem. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 101–112. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8_8
Voukelatou, V., et al.: Measuring objective and subjective well-being: dimensions and data sources. Int. J. Data Sci. Anal. 1–31 (2020)
Wu, B., Liu, L., Yang, Y., Zheng, K., Wang, X.: Using improved conditional generative adversarial networks to detect social bots on twitter. IEEE Access 8, 36664–36680 (2020)
Xu, J., Livshits, B.: The anatomy of a cryptocurrency pump-and-dump scheme. In: The 28th USENIX Security Symposium (SEC 2019), pp. 1609–1625 (2019)
Zaborovskaya, A., Zaborovskiy, V., Pletnev, K.: Possibilities of preventing manipulative transactions on the stock market in the conditions of new industrialization. In: The 2nd International Scientific Conference on New Industrialization: Global, National, Regional Dimension (SICNI 2018), pp. 154–160. Atlantis Press (2019)
Zhou, X., Zafarani, R.: A survey of fake news: fundamental theories, detection methods, and opportunities. ACM Comput. Surv. (CSUR) 53(5), 1–40 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Caprolu, M., Cresci, S., Raponi, S., Di Pietro, R. (2021). New Dimensions of Information Warfare: The Economic Pillar—Fintech and Cryptocurrencies. In: Garcia-Alfaro, J., Leneutre, J., Cuppens, N., Yaich, R. (eds) Risks and Security of Internet and Systems. CRiSIS 2020. Lecture Notes in Computer Science(), vol 12528. Springer, Cham. https://doi.org/10.1007/978-3-030-68887-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-68887-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68886-8
Online ISBN: 978-3-030-68887-5
eBook Packages: Computer ScienceComputer Science (R0)