Abstract
Recently introduced federated learning is an attractive framework for the distributed training of deep learning models with thousands of participants. However, it can potentially be used with malicious intent. For example, adversaries can use their smartphones to jointly train a classifier for extracting secret keys from the smartphones’ SIM cards without sharing their side-channel measurements with each other. With federated learning, each participant might be able to create a strong model in the absence of sufficient training data. Furthermore, they preserve their anonymity. In this paper, we investigate this new attack vector in the context of side-channel attacks. We compare the federated learning, which aggregates model updates submitted by N participants, with two other aggregating approaches: (1) training on combined side-channel data from N devices, and (2) using an ensemble of N individually trained models. Our first experiments on 8-bit Atmel ATxmega128D4 microcontroller implementation of AES show that federated learning is capable of outperforming the other approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atchinson, B.K., Fox, D.M.: From the field: the politics of the health insurance portability and accountability act. Health Affairs 16(3), 146–150 (1997)
Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Study of deep learning techniques for side-channel analysis and introduction to ASCAD database. ANSSI, France & CEA, LETI, MINATEC Campus, France, vol. 22 (2018). https://eprint.iacr.org/2018/053.pdf
Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017)
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2
Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3
CW308 UFO Target. https://wiki.newae.com/CW308_UFO_Target
The Design of Rijndael. ISC. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-60769-5_9
Das, D., Golder, A., Danial, J., Ghosh, S., Raychowdhury, A., Sen, S.: X-deepsca: cross-device deep learning side channel attack. In: Proceedings of the 56th Annual Design Automation Conference 2019, pp. 1–6 (2019)
Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked implementation of AES. In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 106–111. IEEE (2015)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org
Jin, M., Zheng, M., Hu, H., Yu, N.: An enhanced convolutional neural network in side-channel attacks and its visualization. arXiv preprint arXiv:2009.08898 (2020)
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25
Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9
Konečnỳ, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimization: Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527 (2016)
Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)
Kubota, T., Yoshida, K., Shiozaki, M., Fujino, T.: Deep learning side-channel attack against hardware implementations of AES. In: 2019 22nd Euromicro Conference on Digital System Design (DSD), pp. 261–268. IEEE (2019)
Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., He, B.: A survey on federated learning systems: Vision, hype and reality for data privacy and protection (2019)
Maghrebi, H.: Deep learning based side channel attacks in practice. Technical Report, IACR Cryptology ePrint Archive 2019, vol. 578 (2019)
Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1
Martinasek, Z., Dzurenda, P., Malina, L.: Profiling power analysis attack based on MLP in DPA contest v4. 2. In: 2016 39th International Conference on Telecommunications and Signal Processing (TSP), pp. 223–226. IEEE (2016)
Martinasek, Z., Malina, L., Trasy, K.: Profiling power analysis attack based on multi-layer perceptron network. In: Mastorakis, N., Bulucea, A., Tsekouras, G. (eds.) Computational Problems in Science and Engineering. LNEE, vol. 343, pp. 317–339. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15765-8_18
McMahan, H.B., Moore, E., Ramage, D., Hampson, S., et al.: Communication-efficient learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629 (2016)
NewAE Technology Inc.: Chipwhisperer. https://newae.com/tools/chipwhisperer
O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 243–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-0_17
Perin, G., Ege, B., van Woudenberg, J.: Lowering the bar: deep learning for side-channel analysis (white-paper). In: Proceedings of BlackHat, pp. 1–15 (2018)
Polikar, R.: Ensemble learning. In: Ensemble Machine Learning, pp. 1–34. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4419-9326-7_1
Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)
Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.S.: Federated multi-task learning. In: Advances in Neural Information Processing Systems, pp. 4424–4434 (2017)
Timon, B.: Non-profiled deep learning-based side-channel attacks. IACR Cryptol. ePrint Arch. 2018, 196 (2018)
Voigt, P., von dem Bussche, A.: The EU General Data Protection Regulation (GDPR). A Practical Guide. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57959-7
Wang, H.: Side-Channel Analysis of AES Based on Deep Learning. Master’s thesis, KTH, School of Electrical Engineering and Computer Science (EECS) (2019)
Wang, H., Brisfors, M., Forsmark, S., Dubrova, E.: How diversity affects deep-learning side-channel attacks. In: 2019 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC), pp. 1–7. IEEE (2019)
Wang, H., Dubrova, E.: Tandem deep learning side-channel attack against FPGA implementation of AES. Cryptology ePrint Archive, Report 2020/373 (2020). https://eprint.iacr.org/2020/373
Wang, H., Forsmark, S., Brisfors, M., Dubrova, E.: Multi-source training deep learning side-channel attacks. IEEE 50th International Symposium on Multiple-Valued Logic (2020)
Wang, R., Wang, H., Dubrova, E.: Far field em side-channel attack on AES using deep learning. Cryptology ePrint Archive, Report 2020/1096 (2020). https://eprint.iacr.org/2020/1096
Wu, Y., Shen, K., Chen, Z., Wu, J.: Automatic measurement of fetal cavum septum pellucidum from ultrasound images using deep attention network. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 2511–2515. IEEE (2020)
Yang, G., Li, H., Ming, J., Zhou, Y.: CDAE: towards empowering denoising in side-channel analysis. In: International Conference on Information and Communications Security, pp. 269–286. Springer (2019)
Acknowledgment
This work was supported in part by the research grant 2018-04482 from the Swedish Research Council.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, H., Dubrova, E. (2021). Federated Learning in Side-Channel Analysis. In: Hong, D. (eds) Information Security and Cryptology – ICISC 2020. ICISC 2020. Lecture Notes in Computer Science(), vol 12593. Springer, Cham. https://doi.org/10.1007/978-3-030-68890-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-68890-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68889-9
Online ISBN: 978-3-030-68890-5
eBook Packages: Computer ScienceComputer Science (R0)