Skip to main content

Spoof Detection in a Zigbee Network Using Forge-Resistant Network Characteristics (RSSI and LQI)

  • Conference paper
  • First Online:
Information and Communication Technology and Applications (ICTA 2020)

Abstract

The development of a spoof detection framework in a ZigBee network using forge-resistant network characteristics is presented. ZigBee has become ubiquitous in application areas such as Wireless Sensor Networks (WSNs), Home Area Networks (HANs), Smart Metering, Smart Grid, Internet of Things (IoT) and smart devices. Its pervasiveness and suitability for vast applications makes it a tempting target for attackers. Due to the open nature of the wireless medium, ZigBee networks are susceptible to spoofing attacks; where an illegitimate/Sybil node impersonates or disguises as one or multiple legitimate nodes with malicious intentions. A testbed consisting of two ZU10 ZigBee modules was setup to create a real ZigBee network environment. Received Signal Strength Indicator (RSSI) and the corresponding Link Quality Indicator (LQI) data were collected. The Dynamic Time Warping (DTW) algorithm was used for time series classification and similarity measurement of these dataset over variable physical distances. The framework was able to differentiate ZigBee signals that are at least 1 m apart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vasseur, J.-P., Dunkels, A.: Interconnecting smart objects with ip: The next internet, in Interconnecting Smart Objects with IP: The Next Internet. Morgan Kaufmann Publishers, Elsevier Science (2010)

    Google Scholar 

  2. Xiao, Y., et al.: Security services and enhancements in the IEEE 802.15. 4 wireless sensor networks. In: GLOBECOM 2005 IEEE Global Telecommunications Conference, 2005, St. Louis, MO, USA: IEEE. https://doi.org/10.1109/GLOCOM.2005.1577958

  3. Tennina, S., et al.: IEEE 802.15. 4 and ZigBee as enabling technologies for low-power wireless systems with quality-of-service constraints, Springer, Cham (2013). https://doi.org/10.1007/978-3-642-37368-8

  4. Yang, J.: Pervasive Wireless Environments: Detecting and Localizing User Spoofing. SCS. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07356-9

    Book  Google Scholar 

  5. Eronu, E., Misra, S., Aibinu, M.: Reconfiguration approaches in wireless sensor network: issues and challenges. In: 2013 IEEE International Conference on Emerging & Sustainable Technologies for Power & ICT in a Developing Society (NIGERCON), IEEE (2013). https://doi.org/10.1109/NIGERCON.2013.6715648

  6. Jokar, P., Arianpoo, N., Leung, V.C.: Spoofing prevention using received signal strength for ZigBee-based home area networks. In: Smart Grid Communications (SmartGridComm) Symposium, 2013 IEEE International Conference on Smart Grid, Cyber Security and Privacy, IEEE, Vancouver, BC, Canada (2013). https://doi.org/10.1109/SmartGridComm.2013.6687997

  7. Vaidya, A., Jaiswal, S., Motghare, M.: A review paper on spoofing detection methods in wireless LAN. In: 2016 10th International Conference on Intelligent Systems and Control (ISCO), 2016. IEEE, Coimbatore, India. https://doi.org/10.1109/ISCO.2016.7727054

  8. Sheng, Y., et al.: Detecting 802.11 MAC layer spoofing using received signal strength. In: IEEE INFOCOM 2008 - The 27th Conference on Computer Communications, IEEE, Phoenix, AZ, USA (2008). https://doi.org/10.1109/INFOCOM.2008.239

  9. Chen, Y., et al.: Detecting and localizing identity-based attacks in wireless and sensor networks. IEEE Trans. Veh. Technol. 59(5), 2418–2434 (2010). https://doi.org/10.1109/TVT.2010.2044904

    Article  Google Scholar 

  10. Meena, T., Nishanthy, M., Kamalanaban, E.: Cluster-based mechanism for multiple spoofing attackers in WSN. In: International Conference on Information Communication and Embedded Systems (ICICES), IEEE, Chennai, India (2014). https://doi.org/10.1109/ICICES.2014.7034164

  11. Yu, J., et al.: A framework for detecting MAC and IP spoofing attacks with network characteristics. In: 2016 International Conference on Software Security and Assurance (ICSSA), IEEE, St. Polten, Austria (2016). https://doi.org/10.1109/ICSSA.2016.16

  12. Gupta, D., Dhawale, C., Misra, S.: A cooperative approach for malicious node detection in impromptu wireless networks. In: 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT), IEEE (2016). https://doi.org/10.1109/ICCTICT.2016.7514654

  13. Jokar, P., Arianpoo, N., Leung, V.C.: Spoofing detection in IEEE 802.15. 4 networks based on received signal strength. Ad Hoc Networks, 11(8), pp. 2648–2660 (2013). https://doi.org/10.1016/j.adhoc.2013.04.015

  14. Das, S.K., Kant, K., Zhang, N.: Handbook on securing cyber-physical critical infrastructure, Elsevier. p. 191–203 (2012). https://doi.org/10.1016/C2011-0-04434-4

  15. Faria, D.B., Cheriton, D.R.: Detecting identity-based attacks in wireless networks using signalprints. In: Proceedings of the 5th ACM workshop on Wireless security, ACM, Hangzhou, China (2006). https://doi.org/10.1109/GreenCom-CPSCom.2010.61

  16. Odusami, M., Misra, S., Abayomi Alli, O., Abayomi Alli, A., Fernandez Sanz, L.: A survey and meta analysis of application layer distributed denial of service attack, 33(18), p. e4603 (2020). https://doi.org/10.1002/dac.4603

  17. Guo, F., Chiueh, T.: Sequence number-based MAC address spoof detection. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 309–329. Springer, Heidelberg (2006). https://doi.org/10.1007/11663812_16

    Chapter  Google Scholar 

  18. Maivizhi, R., Matilda, S.: Distance based Detection and Localization of multiple spoofing attackers for wireless networks. In: International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), IEEE, Chennai, India (2014). https://doi.org/10.1109/ICCPEIC.2014.6915341

  19. Chen, Y., Trappe, W., Martin, R.P.: Detecting and localizing wireless spoofing attacks. In: 2007 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, IEEE, San Diego, CA (2007). https://doi.org/10.1109/SAHCN.2007.4292831

  20. Wang, Y., Guardiola, I.G., Wu, X.: RSSI and LQI data clustering techniques to determine the number of nodes in wireless sensor networks. Int. J. Distrib. Sens. Netw. 10(5), 380526 (2014). https://doi.org/10.1155/2014/380526

    Article  Google Scholar 

  21. Misra, S., Ghosh, A., Obaidat, M.S.: Detection of identity-based attacks in wireless sensor networks using signalprints. In: IEEE/ACM International Conference on Green Computing and Communications (GreenCom)-Cyber, Physical and Social Computing (CPSCom), 2010, IEEE, Hangzhou, China (2010). https://doi.org/10.1109/GreenCom-CPSCom.2010.61

  22. Zeng, K., et al.: Identity-based attack detection in mobile wireless networks. In: 2011 Proceedings IEEE INFOCOM. 2011, IEEE, Shanghai, China. https://doi.org/10.1109/INFCOM.2011.5934990

  23. Bildea, A., et al.: Link quality metrics in large scale indoor wireless sensor networks. In: 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), IEEE, London, UK (2013). https://doi.org/10.1109/PIMRC.2013.6666451

  24. Yang, J., et al.: Detection and localization of multiple spoofing attackers in wireless networks. IEEE Trans. Parallel Distrib. Syst. 24(1), 44–58 (2013). https://doi.org/10.1109/TPDS.2012.104

    Article  Google Scholar 

  25. Thakur, P., Patel, R., Patel, N.: A proposed framework for protection of identity based attack in ZigBee. In: 2015 Fifth International Conference on Communication Systems and Network Technologies (CSNT), IEEE, Gwalior, India (2015). https://doi.org/10.1109/CSNT.2015.243

  26. Roy, S., Nene, M.J.: Prevention of node replication in wireless sensor network using received signal strength indicator, link quality indicator and packet sequence number. In: Online International Conference on Green Engineering and Technologies (IC-GET), IEEE, Coimbatore, India (2016). https://doi.org/10.1109/GET.2016.7916613

  27. Wolosz, K., Bodin, U., Riliskis, L.: A measurement study for predicting throughput from LQI and RSSI. In: Bellalta, B., Vinel, A., Jonsson, M., Barcelo, J., Maslennikov, R., Chatzimisios, P., Malone, D. (eds.) MACOM 2012. LNCS, vol. 7642, pp. 89–92. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34976-8_10

    Chapter  Google Scholar 

  28. Zhang, Z., et al.: Item-level indoor localization with passive UHF RFID based on tag interaction analysis. IEEE Trans. Ind. Electron. 61(4), 2122–2135 (2014). https://doi.org/10.1109/TIE.2013.2264785

    Article  Google Scholar 

  29. Barai, S., Biswas, D., Sau, B.: Estimate distance measurement using NodeMCU ESP8266 based on RSSI technique. In: IEEE Conference on Antenna Measurements & Applications (CAMA), 2017, IEEE (2017). https://doi.org/10.1109/CAMA.2017.8273392

  30. Nnebe, S., et al.: Performance evaluation of link quality indicator of a wireless sensor network in an outdoor environment. Int. J. Electron. Commun. Comput. Eng. (IJECCE) 4(4), 1190–1193 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Bahago Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martins, C.B., Adewale, E.A., Jarlath, I.U., Mu’azu, M.B. (2021). Spoof Detection in a Zigbee Network Using Forge-Resistant Network Characteristics (RSSI and LQI). In: Misra, S., Muhammad-Bello, B. (eds) Information and Communication Technology and Applications. ICTA 2020. Communications in Computer and Information Science, vol 1350. Springer, Cham. https://doi.org/10.1007/978-3-030-69143-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69143-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69142-4

  • Online ISBN: 978-3-030-69143-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics