Skip to main content

Sooner Lightweight Cryptosystem: Towards Privacy Preservation of Resource-Constrained Devices

  • Conference paper
  • First Online:
Information and Communication Technology and Applications (ICTA 2020)

Abstract

The use of cryptosystem became popular because of the increased need for exchanges across untrusted medium especially Internet-enabled networks. On the basis of application several forms of cryptosystems have been developed for purpose of authentication, confidentiality, integrity, and non-repudiation. Cryptosystems make use of encryption schemes that convert plaintext to ciphertext in diverse areas of applications. The vast progressions in the Internet of Things (IoT) technology and resource-constrained devices have given rise to massive deployment of sensor devices and growth of services targeted at lightweight devices. Though, these devices support a number of services, they require strong lightweight encryption approaches for privacy protection of data. Existing lightweight cryptosystems fall short on the expected privacy levels and applicability in emerging resource-constrained environment. This paper develops a mathematical model for a Sooner lightweight cryptographic scheme based on reduced and hardened ciphertext block sizes, hash sizes and key sizes of traditional cryptosystems and Public Blockchain technology for ubiquitous systems. Thereafter, the hardening procedure offered by the RSA homomorphic encryption was applied for the purpose of generating stronger, secure and lightweight AES, RSA and SHA-3 in order to deal with untrusted channels exchanges. The proposed Sooner is recommended for adoption in public Blockchain-based smart systems and applications for the purpose of data privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olowu, M., Yinka-Banjo, C., Misra, S., Florez, H.: A secured private-cloud computing system. In: Florez, H., Leon, M., Diaz-Nafria, J.M., Belli, S. (eds.) ICAI 2019. CCIS, vol. 1051, pp. 373–384. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32475-9_27

    Chapter  Google Scholar 

  2. Potey, M.M., Dhote, C.A., Sharma, D.H.: Homomorphic encryption for security of cloud data. Procedia Comput. Sci. 79, 175–181 (2016)

    Article  Google Scholar 

  3. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption schemes. ACM Comput. Surv. 51(4), 1–35 (2018)

    Article  Google Scholar 

  4. Hassan, M.U., Rehmani, M.H., Chen, J.: Privacy preservation in blockchain based IoT systems: Integration issues, prospects, challenges, and future research directions. Future Gener. Comput. Syst. 97, 512–529 (2019)

    Article  Google Scholar 

  5. Das, A., Patterson, S., Wittie, M. P.: EdgeBench: benchmarking edge computing platforms. In: IEEE/ACM International Conference on Utility and Cloud Computing Companion, pp. 175–180 (2018)

    Google Scholar 

  6. Olowu, M., Yinka-Banjo, C., Misra, S., Oluranti, J., Ahuja, R.: Internet of things: demystifying smart cities and communities. In: Chillarige, R., Distefano, S., Rawat, S.S. (eds.) ICACII 2019. LNNS, vol. 119, pp. 363–371. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3338-9_41

    Chapter  Google Scholar 

  7. Lee, H., et al.: A stochastic process based routing algorithm for wireless Ad Hoc networks. In: IEEE 2019 International Conference on Computing, Networking and Communications, pp. 1018–1023 (2019)

    Google Scholar 

  8. Singh, S., Sharma, P.K., Moon, S.Y., Park, J.H.: Advanced lightweight encryption algorithms for IoT devices: survey, challenges and solutions. J. Ambient Intell. Human. Comput. 1-8 (2017). https://doi.org/10.1007/s12652-017-0494-4

  9. Padmavathi, B., Kumari, S.R.: A survey on performance analysis of DES, AES and RSA algorithm along with LSB substitution. Int. J. Sci Res. 2(4), 170–174 (2013)

    Google Scholar 

  10. Patel, N., Oza, P., Agrawal, S.: Homomorphic cryptography and its applications in various domains. In: Bhattacharyya, S., Hassanien, A.E., Gupta, D., Khanna, A., Pan, I. (eds.) International Conference on Innovative Computing and Communications. LNNS, vol. 55, pp. 269–278. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-2324-9_27

    Chapter  Google Scholar 

  11. Ali, M.S., Vecchio, M., Pincheira, M., Dolui, K., Antonelli, F., Rehmani, M.H., Member, S.: Applications of blockchains in the internet of things: a comprehensive survey. IEEE Commun. Surv. Tutorials 21(2), 1676–1717 (2019)

    Article  Google Scholar 

  12. Qui, H.: An efficient data protection architecture based on fragmentation and encryption. PhD Thesis, Paris Institute of Technology (ParisTech), Paris, France (2017)

    Google Scholar 

  13. Mekki, N., Hamdi, M., Aguili, T., Kin, T.-H.: A privacy-preserving scheme using chaos theory for wireless body area network. In: 2018 14th International Wireless Communications & Mobile Computing Conference, IEEE, pp. 774–779 (2018)

    Google Scholar 

  14. Gill, S.S., et al.: Transformative effects of IoT, Blockchain and artificial intelligence on cloud computing: evolution, vision, trends and open challenges. Internet of Things, 8, p. 100118 (2019)

    Google Scholar 

  15. Abayomi-Zannu, T.P., Odun-Ayo, I., Tatama, B.F., Misra, S.: Implementing a mobile voting system utilizing blockchain technology and two-factor authentication in Nigeria. In: 1st International Conference on Computing, Communication, and Cyber-Security, pp. 857–872 (2020)

    Google Scholar 

  16. Venkateswara Rao, P.V., Mohan Krishna Varma, N., Sudhakar, R.: A systematic survey on software-defined networks, routing protocols and security infrastructure for underwater wireless sensor networks (UWSNs). In: Venkata Krishna, P., Obaidat, M.S. (eds.) Emerging Research in Data Engineering Systems and Computer Communications. AISC, vol. 1054, pp. 551–559. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0135-7_50

    Chapter  Google Scholar 

  17. Richards, D., Abdelgawad, A., Yelamarthi, K.: How does encryption influence timing in IoT? In: 2018 IEEE Global Conference on Internet of Things, GCIoT 2018 (2019). https://doi.org/10.1109/GCIoT.2018.8620133

  18. Adrian, D., et al.: Imperfect forward secrecy: How diffie-hellman fails in practice. In: The 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 5–17 (2015)

    Google Scholar 

  19. Rivest, R.L., Adelman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)

    MathSciNet  Google Scholar 

  20. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. Dissertation. Stanford University (2009)

    Google Scholar 

  21. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2

    Chapter  Google Scholar 

  22. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: 31st Annual Cryptology Conference, Advances in Cryptology (CRYPTO 2011), pp. 505–524 (2011)

    Google Scholar 

  23. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: The 44th Annual ACM Symposium on Theory of Computing, pp. 1219–1234 (2012)

    Google Scholar 

  24. Ferrag, M.A., Derdour, M., Mukherjee, M., Derhab, A., Maglaras, L., Janicke, H.: Blockchain technologies for the internet of things: research issues and challenges. IEEE Internet Things J. 6(2), 2044–2188 (2018)

    Google Scholar 

  25. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet of things. IEEE Access 4, 2292–2303 (2016)

    Article  Google Scholar 

  26. Omrani, T., Rhouma, R., Sliman, L.: Lightweight cryptography for resource-constrained devices: a comparative study and rectangle cryptanalysis. In: Bach Tobji, M.A., Jallouli, R., Koubaa, Y., Nijholt, A. (eds.) ICDEc 2018. LNBIP, vol. 325, pp. 107–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97749-2_8

    Chapter  Google Scholar 

  27. Liu, Z., Han, S., Wang, Q., Li, W., Liu, Y., Gu, D.: New insights on linear cryptanalysis. Sci. Chin. Inf. Sci. 63(1), 1–11 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Ayegba Alfa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alfa, A.A., Alhassan, J.K., Olaniyi, O.M., Olalere, M. (2021). Sooner Lightweight Cryptosystem: Towards Privacy Preservation of Resource-Constrained Devices. In: Misra, S., Muhammad-Bello, B. (eds) Information and Communication Technology and Applications. ICTA 2020. Communications in Computer and Information Science, vol 1350. Springer, Cham. https://doi.org/10.1007/978-3-030-69143-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69143-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69142-4

  • Online ISBN: 978-3-030-69143-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics