Skip to main content

Prediction of Malaria Fever Using Long-Short-Term Memory and Big Data

  • Conference paper
  • First Online:
Information and Communication Technology and Applications (ICTA 2020)

Abstract

Malaria has been identified to be one of the most common diseases with a great public health problem globally and it is caused by mosquitos’ parasites. This prevails in developing nations where healthcare facilities are not enough for the patients. The technological advancement in medicine has resulted in the collection of huge volumes of data from various sources in different formats. A reliable and early parasite-based diagnosis, identification of symptoms, disease monitoring, and prescription are crucial to decreasing malaria occurrence in Nigeria. Hence, the use of deep and machine learning models is essentials to reduce the effect of malaria-endemic and for better predictive models. Therefore, this paper proposes a framework to predict malaria-endemic in Nigeria. To predict the malaria-endemic well, both environmental and clinical data were used using Kwara State as a case study. The study used a deep learning algorithm as a classifier for the proposed system. Three locations were selected from Irepodun Local Government Areas of Kwara State with 34 months periodic pattern. Each location reacted differently based on environmental factors. The findings indicate that both factors are significant in malaria prediction and transmission. The LSTM algorithm provides an efficient method for detecting situations of widespread malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kiang, R., et al.: Meteorological, environmental remote sensing, and neural network analysis of the epidemiology of malaria transmission in Thailand. Geospatial Health, 71–84 (2006)

    Google Scholar 

  2. Wilke, A.B., Beier, J.C., Benelli, G.: The complexity of the relationship between global warming and urbanization–an obscure future for predicting increases in vector-borne infectious diseases. Current Opinion Insect Sci. 35, 1–9 (2019)

    Article  Google Scholar 

  3. Benelli, G.: Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme Microb. Technol. 95, 58–68 (2016)

    Article  Google Scholar 

  4. Wilder-Smith, A., Gubler, D.J., Weaver, S.C., Monath, T.P., Heymann, D.L., Scott, T.W.: Epidemic arboviral diseases: priorities for research and public health. Lancet. Infect. Dis 17(3), e101–e106 (2017)

    Article  Google Scholar 

  5. Rabinovich, R.N., et al.: malERA: an updated research agenda for malaria elimination and eradication. PLoS Med. 14(11), e1002456 (2017)

    Article  Google Scholar 

  6. Zolnikov, T.R.: Vector-borne disease. In: Autoethnographies on the Environment and Human Health, pp. 113–126. Palgrave Macmillan, Cham (2018)

    Google Scholar 

  7. Sougoufara, S., Ottih, E.C., Tripet, F.: The need for new vector control approaches targeting outdoor biting Anopheline malaria vector communities. Parasit. Vectors 13(1), 1–15 (2020)

    Article  Google Scholar 

  8. Christophers, S.R.: Epidemic malaria of the Punjab: with a note of a method of predicting epidemic years. Trans. Committee Stud. Malaria India 2, 17–26 (1911)

    Google Scholar 

  9. Awotunde, J.B., Matiluko, O.E., Fatai, O.W.: Medical diagnosis system using fuzzy logic. Afr. J. Comp. ICT 7(2), 99–106 (2014)

    Google Scholar 

  10. Ayo, F.E., Awotunde, J.B., Ogundokun, R.O., Folorunso, S.O., Adekunle, A.O.: A decision support system for multi-target disease diagnosis: a bioinformatics approach. Heliyon 6(3), e03657 (2020)

    Article  Google Scholar 

  11. Zinszer, K., et al.: Forecasting malaria in a highly endemic country using environmental and clinical predictors. Malaria J. 14(1), 245 (2015)

    Article  Google Scholar 

  12. Rochlin, I., Ninivaggi, D.V., Benach, J.L.: Malaria and Lyme disease-the the largest vector-borne US epidemics in the last 100 years: success and failure of public health. BMC Public Health 19(1), 804 (2019)

    Article  Google Scholar 

  13. WHO: World malaria report 2013. World Health Organization, Geneva (2013)

    Google Scholar 

  14. Adebiyi, M., et al.: Computational investigation of consistency and performance of the biochemical network of the malaria parasite, Plasmodium falciparum. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11623, pp. 231–241. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24308-1_19

    Chapter  Google Scholar 

  15. Mutabingwa, T.K.: Artemisinin-based combination therapies (ACTs): best hope for malaria treatment but inaccessible to the needy! Acta Trop. 95, 305–315 (2005)

    Google Scholar 

  16. Leslie, T., et al.: Overdiagnosis and mistreatment of malaria among febrile patients at primary healthcare level in Afghanistan: an observational study. BMJ 345, e4389 (2012)

    Article  Google Scholar 

  17. Bastiaens, G.J.H., Bousema, T., Leslie, T.: Scale-up of malaria rapid diagnostic tests and artemisinin-based combination therapy: challenges and perspectives in sub-Saharan Africa. PLoS Med. 11, e1001590 (2014)

    Article  Google Scholar 

  18. Abisoye, O.A., Jimoh, R.G.: A hybrid intelligent forecasting model to determine malaria transmission. AIT 2015, 5 (2015)

    Google Scholar 

  19. Oladele, T.O., Ogundokun, R.O., Awotunde, J.B., Adebiyi, M.O., Adeniyi, J.K.: Diagmal: a malaria coactive neuro-fuzzy expert system. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12254, pp. 428–441. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58817-5_32

    Chapter  Google Scholar 

  20. Ayo, F.E., Ogundokun, R.O., Awotunde, J.B., Adebiyi, M.O., Adeniyi, A.E.: Severe acne skin disease: a fuzzy-based method for diagnosis. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12254, pp. 320–334. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58817-5_25

    Chapter  Google Scholar 

  21. Davis, J.K., et al.: A genetic algorithm for identifying spatially-varying environmental drivers in a malaria time series model. Environ. Model Softw. 119, 275–284 (2019)

    Article  Google Scholar 

  22. Gomez-Elipe, A., Otero, A., Van Herp, M., Aguirre-Jaime, A.: Forecasting malaria incidence based on monthly case reports and environmental factors in Karuzi, Burundi, 1997–2003. Malaria J. 6(1), 129 (2007)

    Article  Google Scholar 

  23. Santosh, T., Ramesh, D., Reddy, D.: LSTM based prediction of malaria abundances using big data. Comput. Biol. Med. 124, 103859 (2020)

    Google Scholar 

  24. Wang, Y., Kung, L., Byrd, T.A.: Big data analytics: understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Chang. 126, 3–13 (2018)

    Article  Google Scholar 

  25. Choi, T.M., Chan, H.K., Yue, X.: Recent development in big data analytics for business operations and risk management. IEEE Trans. Cybern. 47(1), 81–92 (2016)

    Article  Google Scholar 

  26. Donoho, D.: 50 years of data science. J. Comput. Graph. Stat. 26(4), 745–766 (2017)

    Article  MathSciNet  Google Scholar 

  27. Shi, B., Iyengar, S.S.: General framework of mathematics. Mathematical Theories of Machine Learning - Theory and Applications, pp. 13–16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-17076-9_2

    Chapter  MATH  Google Scholar 

  28. Okewu, E., Misra, S., Lius, F.-S.: Parameter tuning using adaptive moment estimation in deep learning neural networks. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12254, pp. 261–272. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58817-5_20

    Chapter  Google Scholar 

  29. Blei, D.M., Smyth, P.: Science and data science. Proc. Natl. Acad. Sci. 114(33), 8689–8692 (2017)

    Article  Google Scholar 

  30. Hulsen, T., et al.: From big data to precision medicine. Front. Med. 6, 34 (2019)

    Article  Google Scholar 

  31. Baro, E., Degoul, S., Beuscart, R., Chazard, E.: Toward a literature-driven definition of big data in healthcare. BioMed Res. Int. 2015 (2015)

    Google Scholar 

  32. Saweros, E., Song, Y.-T.: Connecting heterogeneous electronic health record systems using tangle. In: Lee, S., Ismail, R., Choo, H. (eds.) IMCOM 2019. AISC, vol. 935, pp. 858–869. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19063-7_68

    Chapter  Google Scholar 

  33. Austin, C., Kusumoto, F.: The application of Big Data in medicine: current implications and future directions. J. Interv. Card. Electrophysiol. 47(1), 51–59 (2016)

    Article  Google Scholar 

  34. Fiske, A., Buyx, A., Prainsack, B.: Health information counselors: a new profession for the age of big data. Acad. Med. 94(1), 37 (2019)

    Article  Google Scholar 

  35. Galetsi, P., Katsaliaki, K., Kumar, S.: Values, challenges, and future directions of big data analytics in healthcare: a systematic review. Soc. Sci. Med., 112533 (2019)

    Google Scholar 

  36. Williamson, B.: Big Data in Education: The Digital Future of Learning, Policy, and Practice. Sage, London (2017)

    Google Scholar 

  37. Krumholz, H.M.: Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health Aff. 33(7), 1163–1170 (2014)

    Article  Google Scholar 

  38. Lacroix, P.: Big data privacy and ethical challenges. In: Househ, M., Kushniruk, Andre W., Borycki, Elizabeth M. (eds.) Big Data, Big Challenges: A Healthcare Perspective. LNB, pp. 101–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06109-8_9

    Chapter  Google Scholar 

  39. Metaxiotis, K.: Healthcare knowledge management. In: Encyclopedia of Knowledge Management, 2nd edn., pp. 366–375. IGI Global (2011)

    Google Scholar 

  40. Halder, P., Pan, I.: Role of Big data analysis in healthcare sector: a survey. In: 2018 Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), pp. 221–225. IEEE, November 2018

    Google Scholar 

  41. Dai, H.N., Wang, H., Xu, G., Wan, J., Imran, M.: Big data analytics for manufacturing internet of things: opportunities, challenges, and enabling technologies. Enterp. Inf. Syst., 1–25 (2019)

    Google Scholar 

  42. Olaronke, I., Oluwaseun, O.: Big data in healthcare: prospects, challenges, and resolutions. In: 2016 Future Technologies Conference (FTC), pp. 1152–1157. IEEE, December 2016

    Google Scholar 

  43. Tresp, V., Overhage, J.M., Bundschus, M., Rabizadeh, S., Fasching, P.A., Yu, S.: Going digital: a survey on digitalization and large-scale data analytics in healthcare. Proc. IEEE 104(11), 2180–2206 (2016)

    Article  Google Scholar 

  44. Oussous, A., Benjelloun, F.Z., Lahcen, A.A., Belfkih, S.: Big data technologies: a survey. J. King Saud Univ.-Comput. Inf. Sci. 30(4), 431–448 (2018)

    Google Scholar 

  45. Sagiroglu, S., Sinanc, D.: Big data: a review. In: 2013 International Conference on Collaboration Technologies and Systems (CTS), pp. 42–47. IEEE (2013)

    Google Scholar 

  46. Villars, R.L., Olofson, C.W., Eastwood, M.: Big data: what it is and why you should care. White Paper, IDC, 14, 1–14 (2011)

    Google Scholar 

  47. Priyanka, K., Kulennavar, N.: A survey on big data analytics in health care. Int. J. Comput. Sci. Inf. Technol. 5(4), 5865–5868 (2014)

    Google Scholar 

  48. Kruse, C.S., Goswamy, R., Raval, Y.J., Marawi, S.: Challenges and opportunities of big data in health care: a systematic review. JMIR Medical Inform. 4(4), e38 (2016)

    Article  Google Scholar 

  49. Abayomi-Alli, A., Abayomi-Alli, O., Vipperman, J., Odusami, M., Misra, S.: Multi-class classification of impulse and non-impulse sounds using deep convolutional neural network (DCNN). In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11623, pp. 359–371. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24308-1_30

    Chapter  Google Scholar 

  50. Birkhead, G.S., Klompas, M., Shah, N.R.: Use of electronic health records for public health surveillance to advance public health. Annu. Rev. Public Health 36, 345–359 (2015)

    Article  Google Scholar 

  51. Cohen, I.G., Amarasingham, R., Shah, A., Xie, B., Lo, B.: The legal and ethical concerns that arise from using complex predictive analytics in health care. Health Aff. 33(7), 1139–1147 (2014)

    Article  Google Scholar 

  52. Ram, S., Zhang, W., Williams, M., Pengetnze, Y.: Predicting asthma-related emergency department visits using big data. IEEE J. Biomed. Health Inform. 19(4), 1216–1223 (2015)

    Article  Google Scholar 

  53. Santosh, T., Ramesh, D.: DENCLUE-DE: differential evolution based DENCLUE for scalable clustering in big data analysis. In: Smys, S., Senjyu, T., Lafata, P. (eds.) ICCNCT 2019. LNDECT, vol. 44, pp. 436–445. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37051-0_50

    Chapter  Google Scholar 

  54. Ayeni, F., Misra, S., Omoregbe, N.: Using big data technology to contain current and future occurrence of ebola viral disease and other epidemic diseases in West Africa. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) ICSI 2015. LNCS, vol. 9142, pp. 107–114. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20469-7_13

    Chapter  Google Scholar 

  55. Behera, R.K., Jena, M., Rath, S.K., Misra, S.: Co-LSTM: convolutional LSTM model for sentiment analysis in social big data. Inf. Process. Manage. 58(1), 102435 (2021)

    Article  Google Scholar 

  56. Ward, P.R.: Improving access to, use of, and outcomes from public health programs: the importance of building and maintaining trust with patients/clients. Front. Public Health 5, 22 (2017)

    Article  Google Scholar 

  57. Okewu, E., Misra, S., Fernandez, S.L., Ayeni, F., Mbarika, V., Damaševičius, R.: Deep neural networks for curbing climate change-induced farmers-herdsmen clashes in a sustainable social inclusion initiative. Problemy Ekorozwoju 14(2) (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Bamidele Awotunde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Awotunde, J.B., Jimoh, R.G., Oladipo, I.D., Abdulraheem, M. (2021). Prediction of Malaria Fever Using Long-Short-Term Memory and Big Data. In: Misra, S., Muhammad-Bello, B. (eds) Information and Communication Technology and Applications. ICTA 2020. Communications in Computer and Information Science, vol 1350. Springer, Cham. https://doi.org/10.1007/978-3-030-69143-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69143-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69142-4

  • Online ISBN: 978-3-030-69143-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics