Skip to main content

Drug Verification System Using Quick Response Code

  • Conference paper
  • First Online:
Information and Communication Technology and Applications (ICTA 2020)

Abstract

Drug errors and abuses are the most frequently reported deficiencies in the healthcare sector worldwide. In the US alone over $3.5 billion has been expended on treatment related to drug errors that concern more than 1.5 million individuals. The drug is an important part of livelihood has faced the problem of authentication because medicines have to be tested to differentiate between the real and the fake. Drug code detection will reduce the risk of these mistakes by supplying the first responders with accurate information that can quickly decode this information using a code scanner on their smartphones and thus take the necessary steps against their use. The previous study implemented a desktop application system that checks for standardized drugs by scanning the Quick Response codes on the pack. Recently, lots of improvements have taken place in terms of smartphone development with various tools like cameras, which can be used to scan drug barcode. Therefore, the study developed a mobile application to scan the drugs' barcode and verify authenticity. The application designed using an integrated database for real-time drug authentications. The application was implemented using SQL running on a server and interacted with an Application Programming Interface (API) to serve as an intermediary between the application and the browser API built with an Object-relational mapping (ORM) called Sequelize. After code is scanned to gets its serial code, the API validates the serial code and releases a quick response code through a JavaScript Object Notation (JSON). The proposed system can be used by doctors, pharmacists and patients for the identification of fakes and harmful drugs, hence reduced the calculations of fakes or harmful drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trenfield, S.J., et al.: Track-and-trace: novel anti-counterfeit measures for 3D printed personalized drug products using smart material inks. Int. J. Pharm. 567, 118443 (2019)

    Article  Google Scholar 

  2. Kelesidis, T., Falagas, M.E.: Substandard/counterfeit antimicrobial drugs. Clin. Microbiol. Rev. 28(2), 443–464 (2015)

    Article  Google Scholar 

  3. Berger, J.: European market assessment for the main organic export products from Armenia, Moldova, and Ukraine (2018)

    Google Scholar 

  4. Bansal, D., Malla, S., Gudala, K., Tiwari, P.: Anti-counterfeit technologies: a pharmaceutical industry perspective. Sci. Pharm. 81(1), 1–14 (2013)

    Article  Google Scholar 

  5. Lee, K.S., et al.: Combating sale of counterfeit and falsified medicines online: a losing battle. Front. Pharmacol. 8, 268 (2017)

    Article  Google Scholar 

  6. Naughton, B.: The Future of Falsified and Substandard Medicine Detection: Digital Methods to Track and Authenticate Pharmaceutical Products (2018)

    Google Scholar 

  7. Han, S., et al.: Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs. Adv. Mater. 24(44), 5924–5929 (2012)

    Article  Google Scholar 

  8. You, M., et al.: Three-dimensional quick response code based on inkjet printing of up conversion fluorescent nanoparticles for drug anti-counterfeiting. Nanoscale 8(19), 10096–10104 (2016)

    Article  Google Scholar 

  9. Liu, Y., Tao, X., Wang, Y.P.: U.S. Patent No. 9,111,159. U.S. Patent and Trademark Office, Washington, DC (2015)

    Google Scholar 

  10. Bell, T., Duncan, C., Rainer, A.: What is coding? In: Creating the Coding Generation in Primary Schools, pp. 3–21. Routledge (2017)

    Google Scholar 

  11. Perret, E., Vena, A., Tedjini, S., Boutant, Y., Halope, C.: U.S. Patent No. 9,697,446. U.S. Patent and Trademark Office, Washington, DC (2017)

    Google Scholar 

  12. Winter, M.: Scan me everybody’s guide to the magical world of QR codes. West song Publishing (2011)

    Google Scholar 

  13. Tiryakioglu, B., Kayakutlu, G., Duzdar, I.: Medical device tracking via QR code and efficiency analysis. In 2016 Portland International Conference on Management of Engineering and Technology (PICMET), pp. 3115–3128. IEEE, September 2016

    Google Scholar 

  14. Naik, N., Kadam, N., Bhalekar, M.: A technique to hide encrypted data in QR codes using EK-EQR algorithm. Int. J. Comput. Appl. 161(12), 25–28 (2017)

    Google Scholar 

  15. Adeniyi, A.E., Amusan, E.A., Olagunju, M., Ogundokun, R.O.: Application of smartphone QR code scanner as a means of authenticating student identity card. Int. J. Eng. Res. Technol. 13(1), 48–43 (2020)

    Article  Google Scholar 

  16. Picard, J., Landry, P.: U.S. Patent No. 9,594,993. U.S. Patent and Trademark Office, Washington, DC (2017)

    Google Scholar 

  17. Yan, B., Xiang, Y., Hua, G.: Improving Image Quality in Visual Cryptography. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8289-5

  18. Vazquez-Briseno, M., Hirata, F.I., Sanchez-Lopez, J., Jimenez-Garcia, E., Navarro-Cota, C., Nieto-Hipolito, J.: Using RFID/NFC and QR-code in mobile phones to link the physical and the digital world. Interactive Multimedia, pp. 219–242 (2012)

    Google Scholar 

  19. Brodie, K., Madden, L.L., Rosen, C.A.: Applications of quick response (QR) codes in medical education. J. Grad. Med. Edu. 12(2), 138–140 (2020)

    Google Scholar 

  20. Kumar, A., Kumar Nigam, A.: A Comparative Analysis of uses of 1-D and 2-D Barcodes. Int. J. Adv. Res. Comput. Sci. 5(6) (2014)

    Google Scholar 

  21. Li, C.M., Hu, P., Lau, W.C.: Authpaper: protecting paper-based documents and credentials using authenticated 2D barcodes. In: 2015 IEEE International Conference on Communications (ICC), pp. 7400–7406. IEEE, June 2014

    Google Scholar 

  22. Nazemzadeh, P., Fontanelli, D., Macii, D., Palopoli, L.: Indoor localization of mobile robots through QR code detection and dead reckoning data fusion. IEEE/ASME Trans. Mechatron. 22(6), 2588–2599 (2017)

    Article  Google Scholar 

  23. Burian, A., Kangas, J.A., Vehvilainen, M.: U.S. Patent No. 7,946,491. U.S. Patent and Trademark Office, Washington, DC (2011)

    Google Scholar 

  24. Zhao, Y., Chapman, E., Wang, S.G., Hoover, M.E., Eschbach, R.: U.S. Patent No. 8,261,988. U.S. Patent and Trademark Office, Washington, DC (2012)

    Google Scholar 

  25. Gallo, O., Manduchi, R.: U.S. Patent No. 9,098,764. U.S. Patent and Trademark Office, Washington, DC (2015)

    Google Scholar 

  26. Bachelder, I.A., Vaidyanathan, S.: U.S. Patent No. 9,361,499. U.S. Patent and Trademark Office, Washington, DC (2016)

    Google Scholar 

  27. Knudson, E.B., Rodriguez, T.F.: U.S. Patent No. 8,620,021. U.S. Patent and Trademark Office, Washington, DC (2013)

    Google Scholar 

  28. Hsu, J.Y.: Computer Architecture: Software Aspects, Coding, and Hardware. CRC Press, Boca Raton (2017)

    Google Scholar 

  29. Mullani, J.J., Sankar, M., Khade, P.S., Sonalkar, S.H., Patil, N.L.: OCR based speech synthesis system using labview: text to speech conversion system using OCR. In: 2018 Second International Conference on Computing Methodologies and Communication (ICCMC), pp. 7–14. IEEE, February 2018

    Google Scholar 

  30. Someswar, G.M., Reddy, M.M.: Design and development of a suitable identity management framework in heterogeneous internet of things. Compusoft 7(3), 2716–2732 (2018)

    Google Scholar 

  31. Falas, T., Kashani, H.: Two-dimensional bar-code decoding with camera-equipped mobile phones. In: Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PerComW 2007), pp. 597–600. IEEE, March 2007

    Google Scholar 

  32. Soon, T.J.: QR code. . Synth. J. 2008, 59–78 (2008)

    Google Scholar 

  33. Xu, F.: QR Codes and library bibliographic records. Vine (2014)

    Google Scholar 

  34. Ecker, M., Pretsch, T.: The durability of switchable QR code carriers under hydrolytic and photolytic conditions. Smart Mater. Struct. 22(9), 094005 (2013)

    Article  Google Scholar 

  35. Guenter, E., Maresh, M.E., Mazzeo, T.S., Nolan, C., Vargas, J.F.: U.S. Patent No. 8,794,537. U.S. Patent and Trademark Office, Washington, DC (2014)

    Google Scholar 

  36. Weir, M.: QR Codes and Mobile Marketing for the Small Business Owner. Michael (2010)

    Google Scholar 

  37. Sahu, S.K., Gonnade, S.K.: Encryption in QR code using steganography. IJERA Int. J. Eng. Res. Appl. 3(4) (2013)

    Google Scholar 

  38. Imam, K.: Personal Health Card: Use of QR Code to Access Medical Data (2018)

    Google Scholar 

  39. Al-Khalifa, H.S.: Utilizing QR code and mobile phones for blinds and visually impaired people. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 1065–1069. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70540-6_159

    Chapter  Google Scholar 

  40. Purushothaman, M.V., Dhanalakshmi J., Sujithra, K.: QR code inbuild prescription modules for effective pharmacy billing application 119(15), 45–58 (2018). https://www.acadpubl.eu/hub/

  41. Uzun, V., Bilgin, S.: Evaluation and implementation of QR code identity tag system for healthcare in Turkey. SpringerPlus 5(1), 1–24 (2016). https://doi.org/10.1186/s40064-016-3020-9

    Article  Google Scholar 

  42. Tseng, M.H., Wu, H.C.: A cloud medication safety support system using QR code and Web services for elderly outpatients. Technol. Health Care 22(1), 99–113 (2014). https://doi.org/10.3233/THC-140778

    Article  Google Scholar 

  43. Barasa, M.M.: A Mobile phone solution for systematically identifying and reporting nonstandardised medicinal drugs in Nairobi, Kenya (Doctoral dissertation, Strathmore University) (2016)

    Google Scholar 

  44. Dube, S., Sihwa, S., Nyathi, T., Sibanda, K.: QR code based patient medical health records transmission: Zimbabwean case. In: Proceedings of the 2015 InSITE Conference, pp. 521–530 (2015). https://doi.org/10.28945/2233

  45. Rahman, M.N.A., Rahman, A.A., Seyal, A.H., Timbang, I.: QR code for health notification mobile application (2015). https://doi.org/10.15242/iae.iae0215004

  46. Leza, M., Emran, F.N., Ghani, N.A.: Improving Data Accessibility Using QR Code in Healthcare Domain. E-Proceeding of Software Engineering Postgraduates Workshop (SEPoW) Innovative Software Engineering for Creative and Co-Organizer, pp. 119–123 (2013)

    Google Scholar 

  47. Adeniyi, E.A., Awotunde, J.B., Ogundokun, R.O., Kolawole, P.O., Abiodun, M.K., Adeniyi, A.A.: Mobile health application and COVID-19: opportunities and challenges. J. Crit. Rev. 7(15), 3481–3488 (2020)

    Google Scholar 

  48. Sadiku, P.O., Ogundokun, R.O., Habib, E.A.A., Akande, A.: Design and implementation of an android based tourist guide. Int. J. Modern Hosp. Tour. 1(1), 1–33 (2019)

    Google Scholar 

  49. Kayode, A.A., Adeniyi, A.E., Ogundokun, R.O., Ochigbo, S.A.: An android based blood bank information retrieval system. J. Blood Med. 10, 119 (2019)

    Article  Google Scholar 

  50. Odusami, M., Abayomi-Alli, O., Misra, S., Shobayo, O., Damasevicius, R., Maskeliunas, R.: Android malware detection: a survey. In: Florez, H., Diaz, C., Chavarriaga, J. (eds.) ICAI 2018. CCIS, vol. 942, pp. 255–266. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01535-0_19

    Chapter  Google Scholar 

  51. Osho, O., Mohammed, U.L., Nimzing, N.N., Uduimoh, A.A., Misra, S.: Forensic analysis of mobile banking apps. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11623, pp. 613–626. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24308-1_49

    Chapter  Google Scholar 

  52. Aungst, T.D., Clauson, K.A., Misra, S., Lewis, T.L., Husain, I.: How to identify, assess and utilise mobile medical applications in clinical practice. Int. J. Clin. Pract. 68(2), 155–162 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roseline Oluwaseun Ogundokun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ogundokun, R.O., Awotunde, J.B., Misra, S., Umoru, D.O. (2021). Drug Verification System Using Quick Response Code. In: Misra, S., Muhammad-Bello, B. (eds) Information and Communication Technology and Applications. ICTA 2020. Communications in Computer and Information Science, vol 1350. Springer, Cham. https://doi.org/10.1007/978-3-030-69143-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69143-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69142-4

  • Online ISBN: 978-3-030-69143-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics