Skip to main content

On the Non-ergodic Convergence Rate of the Directed Nonsmooth Composite Optimization

  • Conference paper
  • First Online:
Parallel and Distributed Computing, Applications and Technologies (PDCAT 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12606))

  • 1038 Accesses

Abstract

This paper considers the distributed “nonsmooth+nonsmooth” composite optimization problems for which n agents collaboratively minimize the sum of their local objective functions over the directed networks. In particular, we focus on the scenarios where the sought solutions are desired to possess some structural properties, e.g., sparsity. However, to ensure the convergence, most existing methods produce an ergodic solution via the averaging schemes as the output, which causes the desired structural properties of the output to be destroyed. To address this issue, we develop a new decentralized stochastic proximal gradient method, termed DSPG, in which the nonergodic (last) iteration acts as the output. We also show that the DSPG method achieves the nonergodic convergence rate \(O(\log (T)/\sqrt{T})\) for generally convex objective functions and \(O(\log (T)/T)\) for strongly convex objective functions. When the structure-enhancing regularization is absent and the simple and suffix averaging schemes are used, the convergence rates of DSPG reach \(O(1/\sqrt{T})\) for generally convex objective functions and O(1/T) for strongly convex objective functions, showing improvement relative to the rates \(O(\log (T)/\sqrt{T})\) and \(O(\log (T)/T)\) provided by the existing methods. Simulation examples further illustrate the effectiveness of the proposed method.

Supported by National Supercomputing Center in Shenzhen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.csie.ntu.edu.tw/~cjlin/libsvm/.

  2. 2.

    http://archive.ics.uci.edu/ml/datasets.html.

References

  1. Lesser, V., Ortiz, C.L., Tambe, M.: Distributed Sensor Networks: A Multiagent Prespective. Kluwer, Norwell (2003)

    Book  Google Scholar 

  2. Xie, S., Guo, L.: Analysis of distributed adaptive filters based on diffusion strategies over sensor networks. IEEE Trans. Autom. Control 6(3), 3643–3658 (2018)

    Article  MathSciNet  Google Scholar 

  3. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 5(21), 436–441 (2015)

    Article  Google Scholar 

  4. Author, F.: Article title. Journal 2(5), 99–110 (2003)

    Google Scholar 

  5. Rakhlin, A., Shamir, O., Sridharan, K.: Making gradient descent optimal for strongly convex stochastic optimization. In: Proceedings of the International Conference on Machine Learning, vol. 2, no. 5, pp. 1571–1578 (2012)

    Google Scholar 

  6. Shamir, O., Zhang, T.: Stochastic gradient for non-smooth optimization: Convergence results and optimal averaging schemes. In: Proceedings of the International Conference on Machine Learning, vol. 2, no. 1, pp. 71–79 (2013)

    Google Scholar 

  7. Nedic, A., Olshevsky, A.: Stochastic gradient-push for strongly convex function on time-varying directed graphs. IEEE Trans. Autom. Control 6(1), 3936–3947 (2016)

    Article  MathSciNet  Google Scholar 

  8. Makhdoumi, A., Ozdaglar, A.E.: Graph balancing for distributed subgradient methods over directed graphs. In: Proceedings of the International Conference on Machine Learning, vol. 2, pp. 71–79 (2013)

    Google Scholar 

  9. Xiao, L.: Dual averaging method for regularized stochastic learning and online optimization. J. Mach. Learn. Res. 1, 99–110 (2003)

    Google Scholar 

  10. Duchi, J.C., Singer, Y.: Efficient online and batch learning using forward backward splitting. J. Mach. Learn. Res. 1, 2899–2934 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Parikh, N., Boyd, S.: Proximal algorithms. Foundations Trends Optim. 1(3), 127–239 (2013)

    Article  Google Scholar 

  12. Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastics composite optimization. Math. Program. 1(55), 267–305 (2016)

    Article  MathSciNet  Google Scholar 

  13. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: Proceedings of IEEE Symposium on Foundations of Computer Science, vol. 4, no. 4, pp. 482–491 (2003)

    Google Scholar 

  14. Kushner, H.J., Yin, G.: Stochastic Approximation and Recursive Algorithms and Applications, vol. 3, pp. 99–110. Springer, Cham (2003)

    MATH  Google Scholar 

  15. Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25

    Chapter  Google Scholar 

  16. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. B 5(8), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Hearst, M.A., Dumais, S.T., Osman, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Their Appl. 1(3), 18–28 (1998)

    Article  MathSciNet  Google Scholar 

  18. Hong, M., Chang, T.H.: Stochastic proximal gradient consensus over random networks. IEEE Trans. Signal Process. 6(5), 2933–2948 (2017)

    Article  MathSciNet  Google Scholar 

  19. Scaman, K., Bach, F., Bubeck, S., Yin, T.L., Massoulie, L.: Optimal algorithms for non-smooth distributed optimization in networks. In: Proceedings of the Advances in Neural Information Processing Systems, vol. 2, no. 5, pp. 2745–2754 (2018)

    Google Scholar 

  20. Xue, D., Hirche, S.: Distributed topology manipulation to control epidemic spreading over networks. IEEE Trans. Signal Process. 6(7), 1163–1174 (2019)

    Article  MathSciNet  Google Scholar 

  21. Lu, X., Lai, J., Yu, X., Wang, Y., Guerrero, J.M.: Distributed coordination of islanded microgrid clusters using a two-layer intermittent communication network. IEEE Trans. Ind. Inform. J. 1(4), 3956–3969 (2018)

    Article  Google Scholar 

  22. Smith, G.B., Hein, B., Whitney, D.E., Fitzpatrick, D.: Distributed network interactions and their emergence in developing neocortex. Nat. Neurosci. 2(1), 1600–1608 (2018)

    Article  Google Scholar 

  23. Yu, D., Zou, Y., Yu, J., Dressler, F., Lau, F.C.: Implementation abstract MAC Layer in Dynamic Dressler. IEEE Trans. Mobile Comput. 1599 (2020). https://doi.org/10.1109/TMC.2020.297

  24. Yu, D., Zou, Y., Yu, J., Dressler, F., Lau, F.C.: Stable local broadcast in Multihop wireless networks under SINR. IEEE/ACM Trans. Netw. J. 2(6), 1278–1291 (2018)

    Article  Google Scholar 

  25. Cai, Z., Zheng, X.: A private and efficient mechanism for data uploading in smart cyber physical systems. IEEE Trans. Netw. Sci. Eng. (TNSE) J. 7(2), 766–775 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoxu Cui .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 79 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, Y., Cui, Z., Zhang, Y., Feng, S. (2021). On the Non-ergodic Convergence Rate of the Directed Nonsmooth Composite Optimization. In: Zhang, Y., Xu, Y., Tian, H. (eds) Parallel and Distributed Computing, Applications and Technologies. PDCAT 2020. Lecture Notes in Computer Science(), vol 12606. Springer, Cham. https://doi.org/10.1007/978-3-030-69244-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69244-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69243-8

  • Online ISBN: 978-3-030-69244-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics