Abstract
We study the problem of maximizing non-monotone submodular functions subject to a p-independence system constraint. Although the submodularity ratio has been well-studied in maximizing set functions under monotonic scenario, the defined parameter may bring hardness of approximation for the maximization of set functions in the non-monotonic case. In this work, utilizing a lower bound for the marginal values, we investigate the Repeated Greedy introduced by (Feldman et al. 2017) and obtain a parameterized performance guarantee for the above constrained submodular maximization problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bai, W., Bilmes, J.: Greed is still good: maximizing monotone submodular \(+\) supermodular (BP) functions. In: Proceedings of the 35th International Conference on Machine Learning, pp. 314–323 (2018)
Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy maximization of non-submodular functions with applications. In: Proceedings of the 34th International Conference on Machine Learning 498–507 (2017)
Bogunovic, I., Zhao, J., Cevher, V.: Robust maximization of non-submodular objectives. In: Proceedings of the 21th International Conference on Artificial Intelligence and Statistics, pp. 890–899 (2018)
Buchbinder, N., Feldman, M.: Deterministic algorithms for submodular maximization problems. ACM Trans. Algorithms 14(3), 32 (2018)
Buchbinder, N., Feldman, M.: Constrained submodular maximization via a non-symmetric technique. Math. Oper. Res. 44(3), 988–1005 (2019)
Buchbinder, N., Feldman, M., Seffi, J., Schwartz, R.: A tight linear time \(1/2\)-approximation for unconstrained submodular maximization. SIAM J. Comput. 44(5), 1384–1402 (2015)
Conforti, M., Cornuéjols, G.: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem. Discrete Appl. Math. 7(3), 251–274 (1984)
Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection. In: Proceedings of the 28th International Conference on Machine Learning, pp. 1057–1064 (2011)
Feige, U.: A threshold of \(\ln n\) for approximating set cover. J. ACM 45(4), 634–652 (1998)
Feige, U., Izsak, R.: Welfare maximization and the supermodular degree. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, pp. 247–256 (2013)
Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)
Feldman, M., Harshaw, C., Karbasi, A.: Greed is good: near-optimal submodular maximization via greedy optimization. In: Proceedings of the 30th Annual Conference on Learning Theory, pp. 758–784 (2017)
Feldman, M., Izsak, R.: Constrained monotone function maximization and the supermodular degree. In: Proceedings of the 17th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems and the 18th International Workshop on Randomization and Computation, pp. 160–175 (2014)
G\(\ddot{\rm o}\)lz, P., Procaccia, A.D.: Migration as submodular optimization. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence, pp. 549–556 (2019)
Gong, S., Nong, Q., Liu, W., Fang, Q.: Parametric monotone function maximization with matroid constraints. J. Global Optim. 75(3), 833–849 (2019). https://doi.org/10.1007/s10898-019-00800-2
Gupta, A., Roth, A., Schoenebeck, G., Talwar, K.: Constrained non-monotone submodular maximization: Offline and secretary algorithms. In: Proceedings of the 6th International Conference on Internet and Network Economics, pp. 246–257 (2010)
Han, A., Cao, Z., Cui, S., Wu, B.: Deterministic approximation for submodular maximization over a matroid in nearly linear time, 2020, to appear in NeurIPS
Hassidim, A., Singer, Y.: Optimization for approximate submodularity. In: Proceedings of the 32nd Annual Conference on Neural Information Processing Systems, pp. 396–407 (2018)
Horel, T., Singer, Y.: Maximization of approximately submodular functions. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 3053–3061 (2016)
Jiang, Y., Wang, Y., Xu, D., Yang, R., Zhang, Y.: Streaming algorithm for maximizing a monotone non-submodular function under \(d\)-knapsack constraint. Optim. Lett. 13(82), 1–14 (2019)
Kuhnle, A., Smith, J.D., Crawford, V.G., Thai, M.T.: Fast maximization of non-submodular, monotonic functions on the integer lattice. In: Proceedings of the 35th International Conference on Machine Learning 2791–2800 (2018)
Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple matroids via generalized exchange properties. Math. Oper. Res. 35(4), 795–806 (2010)
Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A.: Fast constrained submodular maximization: personalized data summarization. In: Proceedings of the 33rd International Conference on Machine Learning, pp. 1358–1366 (2016)
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)
Qian, C., Shi, J., Yu, Y., Tang, K., Zhou, Z.: Subset selection under noise. In: Proceedings of the 31st Annual Conference on Neural Information Processing Systems, pp. 3560–3570 (2017)
Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular and supermodular optimization with bounded curvature. Math. Oper. Res. 42(4), 1197–1218 (2017)
Wang, Z., Moran, B., Wang, X., Pan, Q.: Approximation for maximizing monotone non-decreasing set functions with a greedy method. J. Combin. Optim. 31(1), 29–43 (2014). https://doi.org/10.1007/s10878-014-9707-3
Acknowledgements
The third author is supported by Scientific Research Project of Beijing Municipal Education Commission (No. KM201910005012) and the National Natural Science Foundation of China (No. 11971046). The fourth author is supported by the National Natural Science Foundation of China (No. 11871081).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, R., Gao, S., Wang, C., Zhang, D. (2021). Submodular Maximization with Bounded Marginal Values. In: Zhang, Y., Xu, Y., Tian, H. (eds) Parallel and Distributed Computing, Applications and Technologies. PDCAT 2020. Lecture Notes in Computer Science(), vol 12606. Springer, Cham. https://doi.org/10.1007/978-3-030-69244-5_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-69244-5_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69243-8
Online ISBN: 978-3-030-69244-5
eBook Packages: Computer ScienceComputer Science (R0)