Skip to main content

Distributed Algorithm for Truss Maintenance in Dynamic Graphs

  • Conference paper
  • First Online:
Parallel and Distributed Computing, Applications and Technologies (PDCAT 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12606))

Abstract

Cohesive subgraphs are applied in various fields. Mining cohesive components such as k-truss have attracted a lot of effort to improve time efficiency in large-scale graphs. The k-truss is a subgraph where each edge is contained in at least \(k-2\) triangles and the problem of truss decomposition is computing the k-trusses of a graph for all k. However, most graphs in real scenarios are usually changing over time. The previous studies take the static graphs as input, and the truss maintenance in dynamic graphs receives little attention. This paper focuses on distributed algorithms for truss maintenance. We present a distributed model underlying the real distributed processing model Pregel. Based on the model, we propose truss decomposition and truss maintenance algorithms. To confirm the effectiveness and efficiency of the proposed algorithms, we conduct extensive experiments over both real-world and synthetic graphs.

This work was supported in part by the National Key Research and Development Program of China under Grant 2019YFB2102600 and in part by NSFC under Grant 61971269, Grant 61832012 Grant 61672321, and Grant 61771289 (Corresponding author: Dongxiao Yu). The Science and Technology Development Fund, Macau SAR (File no.0001/2018/AFJ), the Fundamental Research Funds for the Central Universities and the Open Fund of the State Key Laboratory of Software Development Environment (No. SKLSDE2019ZX-04).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://networkx.github.io.

  2. 2.

    http://snap.stanford.edu/data/index.html.

References

  1. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive Quasi-Clique detection. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45995-2_51

    Chapter  Google Scholar 

  2. Akbas, E., Zhao, P.: Truss-based community search: a truss-equivalence based indexing approach. PVLDB 10(11), 1298–1309 (2017)

    Google Scholar 

  3. Cai, Z., He, Z., Guan, X., Li, Y.: Collective data-sanitization for preventing sensitive information inference attacks in social networks. IEEE Trans. Dependable Secur. Comput. 15(4), 577–590 (2018)

    Google Scholar 

  4. Chen, P., Chou, C., Chen, M.: Distributed algorithms for k-truss decomposition. In: 2014 IEEE International Conference on Big Data, Big Data 2014, Washington, DC, USA, 27–30 October 2014, pp. 471–480 (2014)

    Google Scholar 

  5. Cohen, J.: Trusses: Cohesive subgraphs for social network analysis. Technical report. National Security Agency (2008)

    Google Scholar 

  6. Cohen, J.: Graph twiddling in a MapReduce world. Comput. Sci. Eng. 11(4), 29–41 (2009)

    Article  Google Scholar 

  7. Das, A., Svendsen, M., Tirthapura, S.: Incremental maintenance of maximal cliques in a dynamic graph. VLDB J. 28(3), 351–375 (2019)

    Article  Google Scholar 

  8. Hua, Q., et al.: Faster parallel core maintenance algorithms in dynamic graphs. IEEE Trans. Parallel Distrib. Syst. 31(6), 1287–1300 (2020)

    Article  Google Scholar 

  9. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community in large and dynamic graphs. In: International Conference on Management of Data, SIGMOD, Snowbird, UT, USA, pp. 1311–1322 (2014)

    Google Scholar 

  10. Huang, X., Lakshmanan, L.V.S., Yu, J.X., Cheng, H.: Approximate closest community search in networks. PVLDB 9(4), 276–287 (2015)

    Google Scholar 

  11. Jin, H., Wang, N., Yu, D., Hua, Q., Shi, X., Xie, X.: Core maintenance in dynamic graphs: a parallel approach based on matching. IEEE Trans. Parallel Distrib. Syst. 29(11), 2416–2428 (2018)

    Article  Google Scholar 

  12. Luo, Q., Yu, D., Cheng, X., Cai, Z., Yu, J., Lv, W.: Batch processing for truss maintenance in large dynamic graphs. IEEE Trans. Comput. Soc. Syst., 1–12 (2020)

    Google Scholar 

  13. Luo, Q., et al.: Distributed core decomposition in probabilistic graphs. In: Tagarelli, A., Tong, H. (eds.) CSoNet 2019. LNCS, vol. 11917, pp. 16–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34980-6_2

    Chapter  Google Scholar 

  14. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD, Indianapolis, Indiana, USA, pp. 135–146 (2010)

    Google Scholar 

  15. Montresor, A., Pellegrini, F.D., Miorandi, D.: Distributed k-core decomposition. IEEE Trans. Parallel Distrib. Syst. 24(2), 288–300 (2013)

    Article  Google Scholar 

  16. Rossi, M.G., Malliaros, F.D., Vazirgiannis, M.: Spread it good, spread it fast: identification of influential nodes in social networks. In: Proceedings of the 24th International Conference on World Wide Web Companion, WWW, pp. 101–102. ACM (2015)

    Google Scholar 

  17. Sariyüce, A.E., Pinar, A.: Fast hierarchy construction for dense subgraphs. PVLDB 10(3), 97–108 (2016)

    Google Scholar 

  18. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  19. Shao, Y., Chen, L., Cui, B.: Efficient cohesive subgraphs detection in parallel. In: SIGMOD Conference, pp. 613–624. ACM (2014)

    Google Scholar 

  20. Sheng, H., Zheng, Y., Ke, W., Yu, D., Xiong, Z.: Mining hard samples globally and efficiently for person re-identification. IEEE Internet Things J. PP(99), 1 (2020)

    Google Scholar 

  21. Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–823 (2012)

    Google Scholar 

  22. Wang, N., Yu, D., Jin, H., Qian, C., Xie, X., Hua, Q.: Parallel algorithm for core maintenance in dynamic graphs. In: Lee, K., Liu, L. (eds.) 37th IEEE International Conference on Distributed Computing Systems, ICDCS, pp. 2366–2371. IEEE Computer Society (2017)

    Google Scholar 

  23. Yu, D., Zhang, L., Luo, Q., Cheng, X., Yu, J., Cai, Z.: Fast skyline community search in multi-valued networks. Big Data Anal. Mining 3(3), 171–180 (2020)

    Article  Google Scholar 

  24. Zhang, Y., Yu, J.X.: Unboundedness and efficiency of truss maintenance in evolving graphs. In: SIGMOD, pp. 1024–1041 (2019)

    Google Scholar 

  25. Zhou, R., Liu, C., Yu, J.X., Liang, W., Zhang, Y.: Efficient truss maintenance in evolving networks. CoRR abs/1402.2807 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxiao Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, Q., Yu, D., Sheng, H., Yu, J., Cheng, X. (2021). Distributed Algorithm for Truss Maintenance in Dynamic Graphs. In: Zhang, Y., Xu, Y., Tian, H. (eds) Parallel and Distributed Computing, Applications and Technologies. PDCAT 2020. Lecture Notes in Computer Science(), vol 12606. Springer, Cham. https://doi.org/10.1007/978-3-030-69244-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69244-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69243-8

  • Online ISBN: 978-3-030-69244-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics