Skip to main content

Elementary Attestation of Cryptographically Useful Composite Moduli

  • Conference paper
  • First Online:
Innovative Security Solutions for Information Technology and Communications (SecITC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12596))

  • 638 Accesses

Abstract

This paper describes a non-interactive process allowing a prover to convince a verifier that a modulus n is the product of two primes (pq) of about the same size. A further heuristic argument conjectures that \(p-1\) and \(q-1\) have sufficiently large prime factors for cryptographic applications.

The new protocol relies upon elementary number-theoretic properties and can be implemented efficiently using very few operations. This contrasts with state-of-the-art zero-knowledge protocols for RSA modulus proper generation assessment.

The heuristic argument at the end of our construction calls for further cryptanalysis by the community and is, as such, an interesting research question in its own right.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is the case if and only if \(\gcd (g-1, n) = \gcd (g+1, n) = 1\), which happens with high probability.

  2. 2.

    In particular, the Golomb–Dickman constant \(\lambda \approx 0.624\) asymptotically governs the relative size of the largest prime factor of an integer [KP76, Dic30, Gol64].

  3. 3.

    e.g. the binary digits of \(\pi =3.14159265\ldots \).

References

  1. Auerbach, B., Poettering, B.: Hashing solutions instead of generating problems: on the interactive certification of RSA moduli. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 403–430. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_14

    Chapter  Google Scholar 

  2. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 107–122. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_8

    Chapter  MATH  Google Scholar 

  3. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252

    Chapter  Google Scholar 

  4. Dickman, K.: On the frequency of numbers containing prime factors of a certain relative magnitude. ArMAF 22(10), A-10 (1930)

    MATH  Google Scholar 

  5. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  6. Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_42

    Chapter  Google Scholar 

  7. Gennaro, R., Micciancio, D., Rabin, T.: An efficient non-interactive statistical zero-knowledge proof system for quasi-safe prime products. In: Gong, L., Reiter, M.K. (eds.) CCS 1998, Proceedings of the 5th ACM Conference on Computer and Communications Security, San Francisco, CA, USA, 3–5 November 1998, pp. 67–72. ACM (1998)

    Google Scholar 

  8. Golomb, S.W.: Random permutations. Bull. Am. Math. Soc 70, 747 (1964)

    Article  Google Scholar 

  9. Girault, M., Poupard, G., Stern, J.: On the fly authentication and signature schemes based on groups of unknown order. J. Cryptol. 19(4), 463–487 (2006)

    Article  MathSciNet  Google Scholar 

  10. Goldberg, S., Reyzin, L., Sagga, O., Baldimtsi, F.: Efficient noninteractive certification of RSA moduli and beyond. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 700–727. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_24

    Chapter  Google Scholar 

  11. Joye, M.: RSA moduli with a predetermined portion: techniques and applications. In: Chen, L., Mu, Y., Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991, pp. 116–130. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79104-1_9

    Chapter  MATH  Google Scholar 

  12. Knuth, D.E., Pardo, L.T.: Analysis of a simple factorization algorithm. Theor. Comput. Sci. 3(3), 321–348 (1976)

    Article  MathSciNet  Google Scholar 

  13. Lenstra, A., de Weger, B.: On the possibility of constructing meaningful hash collisions for public keys. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 267–279. Springer, Heidelberg (2005). https://doi.org/10.1007/11506157_23

    Chapter  Google Scholar 

  14. Lenstra, A.K., de Weger, B.M.M.: Twin RSA. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 222–228. Springer, Heidelberg (2005). https://doi.org/10.1007/11554868_16

    Chapter  Google Scholar 

  15. Lenstra, A.K.: Generating RSA moduli with a predetermined portion. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 1–10. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1_1

    Chapter  Google Scholar 

  16. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  17. Poupard, G., Stern, J.: Security analysis of a practical “on the fly” authentication and signature generation. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 422–436. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054143

    Chapter  Google Scholar 

  18. Poupard, G., Stern, J.: On the fly signatures based on factoring. In: Motiwalla, J., Tsudik, G. (eds.) CCS 1999, Proceedings of the 6th ACM Conference on Computer and Communications Security, Singapore, 1–4 November 1999, pp. 37–45. ACM (1999)

    Google Scholar 

  19. Rabin, M.O.: Digitalized signatures and public key functions as intractable as intractable as factorization. MIT Laboratory of Computer Sciences, vol. 21 (1979)

    Google Scholar 

  20. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  21. van Oorschot, P.C., Wiener, M.J.: On diffie-hellman key agreement with short exponents. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 332–343. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_29

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Arjen Lenstra for his pertinent remarks on an earlier version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Géraud-Stewart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Géraud-Stewart, R., Naccache, D. (2021). Elementary Attestation of Cryptographically Useful Composite Moduli. In: Maimut, D., Oprina, AG., Sauveron, D. (eds) Innovative Security Solutions for Information Technology and Communications. SecITC 2020. Lecture Notes in Computer Science(), vol 12596. Springer, Cham. https://doi.org/10.1007/978-3-030-69255-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69255-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69254-4

  • Online ISBN: 978-3-030-69255-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics