Abstract
The ability to store and operate on cloud data provides flexibility and reduced hardware needs, but it has the disadvantage of a possible loss of data privacy. Homomorphic encryption solves this problem allowing operations on encrypted data to be performed, while maintaining its confidentiality. In this paper we focus on the introduction of homomorphic cryptosystems within neural networks. The main contribution is an implementation of a speaker recognition system whose security is based on the principles of homomorphic encryption. The application uses a convolutional neural network to classify encrypted spectral samples and it achieves an accuracy of over 99.5%. Moreover, we test different approximations for transfer functions analyzing time and memory consumption along accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Image classification with deep convolutional neural networks. Commun. ACM 25(2), 84–90 (2017). https://doi.org/10.1145/3065386
Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2012). https://doi.org/10.1109/TASL.2011.2134090
Pathak, M.A., Raj, B.: Privacy-preserving speaker verification and identification using Gaussian mixture models. IEEE Trans. Audio Speech Lang. Process. 21(2), 397–406 (2013). https://doi.org/10.1109/TASL.2012.2215602
Nautsch, A., Isadskiy, S., Kolberg, J., Gomez-Barrero, M., Busch, C.: Homomorphic Encryption for speaker recognition: protection of biometric templates and vendor model parameters. In: Proceedings of Odyssey 2018 The Speaker and Language Recognition Workshop, pp. 16–23 (2018). https://doi.org/10.21437/Odyssey
Ene, A., Togan, M., Toma, S.-A.: Privacy preserving vector quantization based speaker recognition system. Proc. Rom. Acad. Seri. A 18, 371–380 (2017)
Zuber, M., Carpov, S., Sirdey, R.: Towards real-time hidden speaker recognition by means of fully homomorphic encryption. In: Meng, W., Gollmann, D., Jensen, C.D., Zhou, J. (eds.) ICICS 2020. LNCS, vol. 12282, pp. 403–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61078-4_23
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1
Chung, J.S., Nagrani, A., Zisserman, A.: VoxCeleb2: Deep speaker recognition. In: Proceedings of Interspeech, pp. 1086–1090 (2018). https://doi.org/10.21437/Interspeech.2018-1929
Lukic, Y., Vogt, C., Durr, O., Stadelmann, T.: Speaker identification and clustering using convolutional neural networks. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Vietri sul Mare, pp. 1–6 (2016). https://doi.org/10.1109/MLSP.2016.7738816
Bunrit ,S., Inkian, T., Kerdprasop, N., Kerdprasop, K.: Text-independent speaker identification using deep learning model of convolution neural network. Int. J. Mach. Learn. Comput. 9(2), 143–148 (2019). https://doi.org/10.18178/ijmlc.2019.9.2.778
Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key criptosystems. Commun. ACM 21(2), 126–126 (1978). https://doi.org/10.1145/359340.359342
Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–179 (1978)
Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. Dissertation. Stanford University, Stanford, CA, USA. Advisor(s) Dan Boneh (2009)
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the forty-first annual ACM symposium on Theory of computing (STOC 2009). Association for Computing Machinery, New York, NY, USA, pp. 169–178 (2009). https://doi.org/10.1145/1536414.1536440
van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2
Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully homomorphic encryption without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (ITCS 2012). Association for Computing Machinery, New York, NY, USA, pp. 309–325 (2012). https://doi.org/10.1145/2090236.2090262
Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, Palm Springs, CA, pp. 97–106 (2011). https://doi.org/10.1109/FOCS.2011.12
Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15
Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted Gaussian mixture models. Digital Sig. Process. 10(1–3), 19–41 (2000). https://doi.org/10.1006/dspr.1999.0361
Lee, H.S., Tsao, Y., Wang, H.M., Jeng, S.K.: Clustering-based i-vector formulation for speaker recognition. In: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, Singapore, pp. 1101–1105 (2014)
Kinnunen, T., Li, H.: An overview of text-independent speaker recognition: from features to supervectors. Speech Commun. 52(1), 12–40 (2010). https://doi.org/10.1016/j.specom.2009.08.009
Towards Data Science. https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53. Accessed 15 May 2020
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Boemer, F., Cammarota, R., Costache, A., Wierzynski, C.: nGraph-HE2: a high-throughput framework for neural network inference on encrypted data. In: Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography (WAHC 2019). Association for Computing Machinery, New York, NY, USA, pp. 45–56 (2019). https://doi.org/10.1145/3338469.3358944
nGraph-HE: Deep learning with Homomorphic Encryption (HE) through Intel nGraph. https://github.com/IntelAI/he-transformer. Accessed 4 June 2020
Microsoft SEAL. https://github.com/Microsoft/SEAL. Accessed 24 Apr 2020
Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: Proceedings of the 33rd International Conference on Machine Learning 48, JMLR.org, New York, NY, USA, pp. 201–210 (2016)
Livni, R., Shalev-Shwartz, S., Shamir, O.: On the Computation Efficiency of Training Neural Networks. In: Proceedings of the 27th International Conference on Neural Information Processing Systems 1. MIT Press, Cambridge, MA, USA, pp. 855–863 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Chindriş, MC., Togan, M., Arseni, ŞC. (2021). Secure Speaker Recognition System Using Homomorphic Encryption. In: Maimut, D., Oprina, AG., Sauveron, D. (eds) Innovative Security Solutions for Information Technology and Communications. SecITC 2020. Lecture Notes in Computer Science(), vol 12596. Springer, Cham. https://doi.org/10.1007/978-3-030-69255-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-69255-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69254-4
Online ISBN: 978-3-030-69255-1
eBook Packages: Computer ScienceComputer Science (R0)