Skip to main content

Secure Card-Based Cryptographic Protocols Using Private Operations Against Malicious Players

  • Conference paper
  • First Online:
Innovative Security Solutions for Information Technology and Communications (SecITC 2020)

Abstract

This paper shows new card-based cryptographic protocols using private operations that are secure against malicious players. Physical cards are used in card-based cryptographic protocols instead of computers. Operations that a player executes in a place where the other players cannot see are called private operations. Using several private operations, calculations of two variable boolean functions and copy operations were realized with the minimum number of cards. Though the private operations are very powerful in card-based cryptographic protocols, there is a problem that it is very hard to prevent malicious actions during private operations. Though most card-based protocols are discussed in the semi-honest model, there might be cases when the semi-honest model is not enough. Thus, this paper shows new protocols that are secure against malicious players. We show logical XOR, logical AND, and copy protocols, since we can execute any logical computations with a combination of these protocols. We use envelopes as an additional tool that can be easily prepared and used by people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe, Y., Hayashi, Y., Mizuki, T., Sone, H.: Five-card and protocol in committed format using only practical shuffles. In: Proceedings of the 5th ACM International Workshop on Asia Public-Key Cryptography (APKC 2018). pp. 3–8 (2018)

    Google Scholar 

  2. den Boer, B.: More efficient match-making and satisfiability The Five Card Trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_23

    Chapter  Google Scholar 

  3. Bultel, X., et al.: Physical Zero-knowledge proof for Makaro. In: Izumim, T., Kuznetsov, P. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2018. Lecture Notes in Computer Science, vol 11201. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_8

  4. Cheung, E., Hawthorne, C., Lee, P.: Cs 758 project: Secure computation with playing cards (2013), http://cdchawthorne.com/writings/secure_playing_cards.pdf

  5. Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physical zero-knowledge proof for norinori. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_14

    Chapter  Google Scholar 

  6. Dvořák, P., Kouckỳ, M.: Barrington plays cards: The complexity of card-based protocols. arXiv preprint arXiv:2010.08445 (2020)

  7. Francis, D., Aljunid, S.R., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Necessary and sufficient numbers of cards for securely computing two-bit output functions. In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 193–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61273-7_10

    Chapter  MATH  Google Scholar 

  8. Hashimoto, Y., Nuida, K., Shinagawa, K., Inamura, M., Hanaoka, G.: Toward finite-runtime card-based protocol for generating hidden random permutation without fixed points. IEICE Trans. Fund. Electron, Commun. Comput. Sci. 101(9), 1503–1511 (2018)

    Google Scholar 

  9. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure grouping protocol using a deck of cards. In: Proc. of 10th International Conference on Information Theoretic Security(ICITS 2017), LNCS Vol. 10681. pp. 135–152 (2017)

    Google Scholar 

  10. Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a random permutation without fixed points. In: Proceedings of 3rd International Conference on Mathematics and Computers in Sciences and in Industry (MCSI 2016). pp. 252–257 (2016)

    Google Scholar 

  11. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: Proceedings of 14th International Conference on Unconventional Computation and Natural Computation(UCNC 2015), LNCS Vol. 9252. pp. 215–226 (2015)

    Google Scholar 

  12. Kastner, J., et al.: The minimum number of cards in practical card-based protocols. In: Proceedings of Asiacrypt 2017, Part III, LNCS Vol. 10626. pp. 126–155 (2017)

    Google Scholar 

  13. Koch, A.: The landscape of optimal card-based protocols. IACR Cryptology ePrint Archive, Report 2018/951 (2018)

    Google Scholar 

  14. Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal verification. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 488–517. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_18

    Chapter  Google Scholar 

  15. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. In: 10th International Conference on Fun with Algorithms (FUN 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

    Google Scholar 

  16. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal number of cards. In: Proceedings of Asiacrypt 2015, LNCS Vol. 9452. pp. 783–807 (2015)

    Google Scholar 

  17. Kurosawa, K., Shinozaki, T.: Compact card protocol. In: Proceedings of 2017 Symposium on Cryptography and Information Security(SCIS 2017). pp. 1A2–6 (2017), (In Japanese)

    Google Scholar 

  18. Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: A Physical zkp for slitherlink: how to perform physical topology-preserving computation. In: Heng, S.-H., Lopez, J. (eds.) ISPEC 2019. LNCS, vol. 11879, pp. 135–151. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34339-2_8

    Chapter  Google Scholar 

  19. Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. IACR Cryptology ePrint Archive, Report 2015/1031 (2015)

    Google Scholar 

  20. Miyahara, D., Hayashi, Y.i., Mizuki, T., Sone, H.: Practical card-based implementations of yao’s millionaire protocol. Theor. Comput. Sci. 803, 207–221 (2020)

    Google Scholar 

  21. Miyahara, D., et al.: Card-based zkp protocols for takuzu and juosan. In: 10th International Conference on Fun with Algorithms (FUN 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

    Google Scholar 

  22. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge proof for kakuro. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 102(9), 1072–1078 (2019)

    Article  Google Scholar 

  23. Mizuki, T.: Applications of card-based cryptography to education. In: IEICE Technical Report ISEC2016-53. pp. 13–17 (2016), (In Japanese)

    Google Scholar 

  24. Mizuki, T.: Card-based protocols for securely computing the conjunction of multiple variables. Theoret. Comput. Sci. 622, 34–44 (2016)

    Article  MathSciNet  Google Scholar 

  25. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In: Proceedings of International Conference on Unconventional Computing and Natural Computation (UCNC 2013), LNCS Vol. 7956. pp. 162–173 (2013)

    Google Scholar 

  26. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In: Proceedings of Asiacrypt 2012, LNCS Vol. 7658 pp. 598–606 (2012)

    Google Scholar 

  27. Mizuki, T., Shizuya, H.: Practical card-based cryptography. In: Proceedings of 7th International Conference on Fun with Algorithms(FUN2014), LNCS Vol. 8496. pp. 313–324 (2014)

    Google Scholar 

  28. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic protocols and its applications. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 100(1), 3–11 (2017)

    Article  Google Scholar 

  29. Mizuki, T., Sone, H.: Six-card secure and and four-card secure xor. In: Proceedings of 3rd International Workshop on Frontiers in Algorithms(FAW 2009), LNCS Vol. 5598. pp. 358–369 (2009)

    Google Scholar 

  30. Moran, T., Naor, M.: Polling with physical envelopes: a rigorous analysis of a human-centric protocol. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 88–108. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_7

    Chapter  Google Scholar 

  31. Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a card-based three-input voting protocol utilizing private sends. In: Proceedings of 10th International Conference on Information Theoretic Security (ICITS 2017), LNCS Vol. 10681. pp. 153–165 (2017)

    Google Scholar 

  32. Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for millionaires’ problem utilizing private permutations. In: Proceedings of International Conference on Cryptology and Network Security(CANS 2016), LNCS vol. 10052. pp. 500–517 (2016)

    Google Scholar 

  33. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any boolean function. In: Proc. of 15th International Conference on Theory and Applications of Models of Computation(TAMC 2015), LNCS Vol. 9076. pp. 110–121 (2015)

    Google Scholar 

  34. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Securely computing three-input functions with eight cards. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 98(6), 1145–1152 (2015)

    Article  Google Scholar 

  35. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority function with eight cards. In: 2nd International Conference on Theory and Practice of Natural Computing(TPNC 2013), LNCS Vol. 8273. pp. 193–204 (2013)

    Google Scholar 

  36. Nishimura, A., Hayashi, Y.i., Mizuki, T., Sone, H.: Pile-shifting scramble for card-based protocols. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 101(9), 1494–1502 (2018)

    Google Scholar 

  37. Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols using unequal division shuffles. Soft. Comput. 22(2), 361–371 (2018)

    Article  Google Scholar 

  38. Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the millionaires’ problem using private input operations. In: Proceedings of 13th Asia Joint Conference on Information Security(AsiaJCIS 2018). pp. 23–28 (2018)

    Google Scholar 

  39. Ono, H., Manabe, Y.: Card-based cryptographic protocols with the minimum number of rounds using private operations. In: Proceedings of 14th International Workshop on Data Privacy Management (DPM 2019) LNCS Vol. 11737. pp. 156–173 (2019)

    Google Scholar 

  40. Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private operations. New Generation Computing pp. 1–22 (2020)

    Google Scholar 

  41. Ruangwises, S., Itoh, T.: And protocols using only uniform shuffles. In: Proceedings of 14th International Computer Science Symposium in Russia(CSR 2019), LNCS Vol. 11532. pp. 349–358 (2019)

    Google Scholar 

  42. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink. arXiv preprint arXiv:2002.01143 (2020)

  43. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. arXiv preprint arXiv:2009.09983 (2020)

  44. Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with 2n cards. In: International Conference on Theory and Applications of Models of Computation. pp. 25–36. Springer (2020)

    Google Scholar 

  45. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for sudoku. Theoretical Computer Science (2020)

    Google Scholar 

  46. Shimizu, Y., Kishi, Y., Sasaki, T., Fujioka, A.: Card-based cryptographic protocols with private operations which can prevent malicious behaviors. In: IEICE Techinical Report ISEC2017-113. pp. 129–135 (2018), (In Japanese)

    Google Scholar 

  47. Shinagawa, K., Mizuki, T.: The six-card trick:secure computation of three-input equality. In: Proc. of 21st International Conference on Information Security and Cryptology (ICISC 2018), LNCS Vol. 11396. pp. 123–131 (2018)

    Google Scholar 

  48. Shinagawa, K., Mizuki, T.: Secure computation of any boolean function based on any deck of cards. In: Chen, Y., Deng, X., Lu, M. (eds.) FAW 2019. LNCS, vol. 11458, pp. 63–75. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18126-0_6

    Chapter  Google Scholar 

  49. Shinagawa, K., Nuida, K.: A single shuffle is enough for secure card-based computation of any boolean circuit. Discr. Appl. Math. 289, 248–261 (2021)

    Article  MathSciNet  Google Scholar 

  50. Shirouchi, S., Nakai, T., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for logic gates utilizing private permutations. In: Proc. of 2017 Symposium on Cryptography and Information Security(SCIS 2017). pp. 1A2–2 (2017), (In Japanese)

    Google Scholar 

  51. Takashima, K., Abe, Y., Sasaki, T., Miyahara, D., Shinagawa, K., Mizuki, T., Sone, H.: Card-based protocols for secure ranking computations. Theoret. Comput. Sci. 845, 122–135 (2020)

    Article  MathSciNet  Google Scholar 

  52. Takashima, K., Miyahara, D., Mizuki, T., Sone, H.: Card-based protocol against actively revealing card attack. In: Martín-Vide, C., Pond, G., Vega-Rodríguez, M.A. (eds.) TPNC 2019. LNCS, vol. 11934, pp. 95–106. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34500-6_6

    Chapter  Google Scholar 

  53. Toyoda, K., Miyahara, D., Mizuki, T., Sone, H.: Six-card finite-runtime xor protocol with only random cut. In: Proceedings of the 7th ACM Workshop on ASIA Public-Key Cryptography. pp. 2–8 (2020)

    Google Scholar 

  54. Watanabe, Y., Kuroki, Y., Suzuki, S., Koga, Y., Iwamoto, M., Ohta, K.: Card-based majority voting protocols with three inputs using three cards. In: 2018 International Symposium on Information Theory and Its Applications (ISITA). pp. 218–222. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshifumi Manabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manabe, Y., Ono, H. (2021). Secure Card-Based Cryptographic Protocols Using Private Operations Against Malicious Players. In: Maimut, D., Oprina, AG., Sauveron, D. (eds) Innovative Security Solutions for Information Technology and Communications. SecITC 2020. Lecture Notes in Computer Science(), vol 12596. Springer, Cham. https://doi.org/10.1007/978-3-030-69255-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69255-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69254-4

  • Online ISBN: 978-3-030-69255-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics