Abstract
This paper shows new card-based cryptographic protocols using private operations that are secure against malicious players. Physical cards are used in card-based cryptographic protocols instead of computers. Operations that a player executes in a place where the other players cannot see are called private operations. Using several private operations, calculations of two variable boolean functions and copy operations were realized with the minimum number of cards. Though the private operations are very powerful in card-based cryptographic protocols, there is a problem that it is very hard to prevent malicious actions during private operations. Though most card-based protocols are discussed in the semi-honest model, there might be cases when the semi-honest model is not enough. Thus, this paper shows new protocols that are secure against malicious players. We show logical XOR, logical AND, and copy protocols, since we can execute any logical computations with a combination of these protocols. We use envelopes as an additional tool that can be easily prepared and used by people.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abe, Y., Hayashi, Y., Mizuki, T., Sone, H.: Five-card and protocol in committed format using only practical shuffles. In: Proceedings of the 5th ACM International Workshop on Asia Public-Key Cryptography (APKC 2018). pp. 3–8 (2018)
den Boer, B.: More efficient match-making and satisfiability The Five Card Trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_23
Bultel, X., et al.: Physical Zero-knowledge proof for Makaro. In: Izumim, T., Kuznetsov, P. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2018. Lecture Notes in Computer Science, vol 11201. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_8
Cheung, E., Hawthorne, C., Lee, P.: Cs 758 project: Secure computation with playing cards (2013), http://cdchawthorne.com/writings/secure_playing_cards.pdf
Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physical zero-knowledge proof for norinori. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_14
Dvořák, P., Kouckỳ, M.: Barrington plays cards: The complexity of card-based protocols. arXiv preprint arXiv:2010.08445 (2020)
Francis, D., Aljunid, S.R., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Necessary and sufficient numbers of cards for securely computing two-bit output functions. In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 193–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61273-7_10
Hashimoto, Y., Nuida, K., Shinagawa, K., Inamura, M., Hanaoka, G.: Toward finite-runtime card-based protocol for generating hidden random permutation without fixed points. IEICE Trans. Fund. Electron, Commun. Comput. Sci. 101(9), 1503–1511 (2018)
Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure grouping protocol using a deck of cards. In: Proc. of 10th International Conference on Information Theoretic Security(ICITS 2017), LNCS Vol. 10681. pp. 135–152 (2017)
Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a random permutation without fixed points. In: Proceedings of 3rd International Conference on Mathematics and Computers in Sciences and in Industry (MCSI 2016). pp. 252–257 (2016)
Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: Proceedings of 14th International Conference on Unconventional Computation and Natural Computation(UCNC 2015), LNCS Vol. 9252. pp. 215–226 (2015)
Kastner, J., et al.: The minimum number of cards in practical card-based protocols. In: Proceedings of Asiacrypt 2017, Part III, LNCS Vol. 10626. pp. 126–155 (2017)
Koch, A.: The landscape of optimal card-based protocols. IACR Cryptology ePrint Archive, Report 2018/951 (2018)
Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal verification. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 488–517. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_18
Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. In: 10th International Conference on Fun with Algorithms (FUN 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)
Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal number of cards. In: Proceedings of Asiacrypt 2015, LNCS Vol. 9452. pp. 783–807 (2015)
Kurosawa, K., Shinozaki, T.: Compact card protocol. In: Proceedings of 2017 Symposium on Cryptography and Information Security(SCIS 2017). pp. 1A2–6 (2017), (In Japanese)
Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: A Physical zkp for slitherlink: how to perform physical topology-preserving computation. In: Heng, S.-H., Lopez, J. (eds.) ISPEC 2019. LNCS, vol. 11879, pp. 135–151. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34339-2_8
Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. IACR Cryptology ePrint Archive, Report 2015/1031 (2015)
Miyahara, D., Hayashi, Y.i., Mizuki, T., Sone, H.: Practical card-based implementations of yao’s millionaire protocol. Theor. Comput. Sci. 803, 207–221 (2020)
Miyahara, D., et al.: Card-based zkp protocols for takuzu and juosan. In: 10th International Conference on Fun with Algorithms (FUN 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)
Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge proof for kakuro. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 102(9), 1072–1078 (2019)
Mizuki, T.: Applications of card-based cryptography to education. In: IEICE Technical Report ISEC2016-53. pp. 13–17 (2016), (In Japanese)
Mizuki, T.: Card-based protocols for securely computing the conjunction of multiple variables. Theoret. Comput. Sci. 622, 34–44 (2016)
Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In: Proceedings of International Conference on Unconventional Computing and Natural Computation (UCNC 2013), LNCS Vol. 7956. pp. 162–173 (2013)
Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In: Proceedings of Asiacrypt 2012, LNCS Vol. 7658 pp. 598–606 (2012)
Mizuki, T., Shizuya, H.: Practical card-based cryptography. In: Proceedings of 7th International Conference on Fun with Algorithms(FUN2014), LNCS Vol. 8496. pp. 313–324 (2014)
Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic protocols and its applications. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 100(1), 3–11 (2017)
Mizuki, T., Sone, H.: Six-card secure and and four-card secure xor. In: Proceedings of 3rd International Workshop on Frontiers in Algorithms(FAW 2009), LNCS Vol. 5598. pp. 358–369 (2009)
Moran, T., Naor, M.: Polling with physical envelopes: a rigorous analysis of a human-centric protocol. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 88–108. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_7
Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a card-based three-input voting protocol utilizing private sends. In: Proceedings of 10th International Conference on Information Theoretic Security (ICITS 2017), LNCS Vol. 10681. pp. 153–165 (2017)
Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for millionaires’ problem utilizing private permutations. In: Proceedings of International Conference on Cryptology and Network Security(CANS 2016), LNCS vol. 10052. pp. 500–517 (2016)
Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any boolean function. In: Proc. of 15th International Conference on Theory and Applications of Models of Computation(TAMC 2015), LNCS Vol. 9076. pp. 110–121 (2015)
Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Securely computing three-input functions with eight cards. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 98(6), 1145–1152 (2015)
Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority function with eight cards. In: 2nd International Conference on Theory and Practice of Natural Computing(TPNC 2013), LNCS Vol. 8273. pp. 193–204 (2013)
Nishimura, A., Hayashi, Y.i., Mizuki, T., Sone, H.: Pile-shifting scramble for card-based protocols. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 101(9), 1494–1502 (2018)
Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols using unequal division shuffles. Soft. Comput. 22(2), 361–371 (2018)
Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the millionaires’ problem using private input operations. In: Proceedings of 13th Asia Joint Conference on Information Security(AsiaJCIS 2018). pp. 23–28 (2018)
Ono, H., Manabe, Y.: Card-based cryptographic protocols with the minimum number of rounds using private operations. In: Proceedings of 14th International Workshop on Data Privacy Management (DPM 2019) LNCS Vol. 11737. pp. 156–173 (2019)
Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private operations. New Generation Computing pp. 1–22 (2020)
Ruangwises, S., Itoh, T.: And protocols using only uniform shuffles. In: Proceedings of 14th International Computer Science Symposium in Russia(CSR 2019), LNCS Vol. 11532. pp. 349–358 (2019)
Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink. arXiv preprint arXiv:2002.01143 (2020)
Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. arXiv preprint arXiv:2009.09983 (2020)
Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with 2n cards. In: International Conference on Theory and Applications of Models of Computation. pp. 25–36. Springer (2020)
Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for sudoku. Theoretical Computer Science (2020)
Shimizu, Y., Kishi, Y., Sasaki, T., Fujioka, A.: Card-based cryptographic protocols with private operations which can prevent malicious behaviors. In: IEICE Techinical Report ISEC2017-113. pp. 129–135 (2018), (In Japanese)
Shinagawa, K., Mizuki, T.: The six-card trick:secure computation of three-input equality. In: Proc. of 21st International Conference on Information Security and Cryptology (ICISC 2018), LNCS Vol. 11396. pp. 123–131 (2018)
Shinagawa, K., Mizuki, T.: Secure computation of any boolean function based on any deck of cards. In: Chen, Y., Deng, X., Lu, M. (eds.) FAW 2019. LNCS, vol. 11458, pp. 63–75. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18126-0_6
Shinagawa, K., Nuida, K.: A single shuffle is enough for secure card-based computation of any boolean circuit. Discr. Appl. Math. 289, 248–261 (2021)
Shirouchi, S., Nakai, T., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for logic gates utilizing private permutations. In: Proc. of 2017 Symposium on Cryptography and Information Security(SCIS 2017). pp. 1A2–2 (2017), (In Japanese)
Takashima, K., Abe, Y., Sasaki, T., Miyahara, D., Shinagawa, K., Mizuki, T., Sone, H.: Card-based protocols for secure ranking computations. Theoret. Comput. Sci. 845, 122–135 (2020)
Takashima, K., Miyahara, D., Mizuki, T., Sone, H.: Card-based protocol against actively revealing card attack. In: MartÃn-Vide, C., Pond, G., Vega-RodrÃguez, M.A. (eds.) TPNC 2019. LNCS, vol. 11934, pp. 95–106. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34500-6_6
Toyoda, K., Miyahara, D., Mizuki, T., Sone, H.: Six-card finite-runtime xor protocol with only random cut. In: Proceedings of the 7th ACM Workshop on ASIA Public-Key Cryptography. pp. 2–8 (2020)
Watanabe, Y., Kuroki, Y., Suzuki, S., Koga, Y., Iwamoto, M., Ohta, K.: Card-based majority voting protocols with three inputs using three cards. In: 2018 International Symposium on Information Theory and Its Applications (ISITA). pp. 218–222. IEEE (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Manabe, Y., Ono, H. (2021). Secure Card-Based Cryptographic Protocols Using Private Operations Against Malicious Players. In: Maimut, D., Oprina, AG., Sauveron, D. (eds) Innovative Security Solutions for Information Technology and Communications. SecITC 2020. Lecture Notes in Computer Science(), vol 12596. Springer, Cham. https://doi.org/10.1007/978-3-030-69255-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-69255-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69254-4
Online ISBN: 978-3-030-69255-1
eBook Packages: Computer ScienceComputer Science (R0)