Abstract
We propose a public-key encryption scheme that arise from a kind of differential geometry called Finsler geometry. Our approach is first to observe a map of a tangent space to another tangent space, and find asymmetricity of linear parallel displacement, which is easy to compute but hard to invert. Then we construct an example of the map over the real numbers. By quantization, we propose a public-key encryption scheme. The scheme is proved to be IND-CCA2 secure under the new assumption of the decisional linear parallel displacement problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abate, M., Patrizio, G.: Finsler Metrics—A Global Approach. LNM, vol. 1591. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0073980
Atanasiu, Gh: Partial Nondegenerate Finsler Spaces, pp. 35–60. Kluwer Academic Publishers, Lagrange and Finsler Geometry (1996)
Akhbar-Zadeh, H.: Sur les espaces de Finsler isotropes. C. R. Acad. Sci. de Paris 252, 2061–2063 (1961)
Anastasiei, M.: A historical remark on the connections of Chern and Rund. Contemp. Math. Finsler Geom. 176, 171–177 (1996)
Anastasiei, M., Antonelli, P.: The differential geometry of Lagrangian which generate sprays. In: vol. of Kluwer Academic Publishers FTPH, no. 76, pp. 15–34 (1996)
Anastasiei, M., Shimada, H.: Deformations of Finsler metrics. In: Finsler Geometries, Kluwer Academic Publishers FTPH, vol. 109, pp. 53–67 (2000)
Anastasiei, M., Shimada, H., Sab\(\breve{a}\)u, V.S.: On the nonlinear connection of a Second Order Finsler Space, Algebras, Groups and Geometries, Hadronic Press, vol. 16, no. 1, pp. 1–10, March 1999
Antonelli, P.L.: Finslerian Geometries. A Meeting of Minds, Kluwer Publication (FTPH), vol. 1909 (2000)
Antonelli, P.L., Hrimiuc, D.: Symplectic transformations of the differential geometry of \(T^{*}M\). Nonlinear Anal. 36, 529–557 (1999)
Antonelli, P.L., Miron, R.: Lagrange and Finsler Geometry Applications to Physics and Biology. Kluwer Academic Publishers (1996)
Miron, R.: A Lagrangian theory of relativity, Preprint Nr.84, Univ. TimiÅŸoara, 53 (1985)
Miron, R.: A Lagrangian theory of relativity, (I, II), Analele Şt. Univ. "Al. I. Cuza" Iaşi, XXXII, s.1., Math., f.2, f.3, 37–62, 7–16 (1986)
Miron, R.: Lagrange geometry. Math. Comput. Model. 20(4/5), 25–40 (1994)
Miron, R.: General randers spaces. Lagrange and Finsler geometry, Ed. by Antonelli, P.L., Miron, R., no. 76, pp. 123–140 (1996)
Miron, R.: The Geometry of Higher-Order Lagrange Spaces, Applications to Mechanics and Physics, Kluwer Academic Publishers FTPH, no. 82 (1997)
Miron, R.: The Geometry of Higher-Order Finsler Spaces. Hadronic Press. Inc., USA (1998)
Miron, R.: The notion of higher order Finsler spaces. theory and applications. In: Finslerian Geometries. Kluwer Academic Publishers FTPH, vol. 109, pp. 193–200 (2000)
Miron, R., Anastasiei, M.: The Geometry of Lagrange Spaces: Theory and Applications. Kluwer Academic Publishers (1994)
Miron, R., Anastasiei, M.: Vector Bundles and Lagrange spaces with Applications to Relativity, Balkan Society of Geometers Monographs and Textbooks Nr.1, Geometry B\(\grave{a}\)lkan press (1997)
Munteanu, G.: Generalized complex Lagrange spaces. In: Finslerian Geometries. Kluwer Academic Publishers. FTPH, vol. 109, pp. 209–223 (2000)
Aikou, T., Kozma, L.: Global aspects of Finsler geometry. In: Handbook of Global Analysis, pp. 1–39, 1211. Elsevier Sci. B. V., Amsterdam (2008)
Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Graduate Texts in Math. Springer-Verlag, New York (2000)
Chern, S.-S., Shen, Z.: Riemann-Finsler Geometry, volume 6 of Nankai Tracts in Mathematics. World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ (2005)
Crampin, M.: Randers spaces with reversible geodesics. Publ. Math. Debrecen 67(3–4), 401–409 (2005)
Matsumoto, M.: Foundations of Finsler Geometry and Special Finsler Spaces. Kaiseisha Press, Shigaken (1986)
Matsumoto, M.: Finsler geometry in the 20th-century. Handbook of Finsler Geometry, vol. 1, pp. 557–966. Kluwer Academic Publishers, Dordrecht (2003)
Nagano, T., Innami, N., Itokawa, Y., Shiohama, K.: Notes on reversibility and branching of geodesics in Finsler spaces, Iasi Ploytechic Inst. Bull.-Math. Theor. Mech. Phys. Sect. 9–18 (2019)
Nagano, T., Anada, H.: One-wayness of Public-Key Encryption Scheme Using Non-symmetry of Finsler Spaces (in Japanese) (Original title: Indistinguishability of Public-Key Encryption Scheme Using Non-symmetry of Finsler Spaces). In: Proceeding of SCIS2020 (2020)
Nagano, T., Anada, H.: Public-key encryption scheme using non-symmetry of Finsler spaces (in Japanese). Proc. CSS2019, 415–421 (2019)
Nagano, T.: Notes on the notion of the parallel displacement in Finsler geometry. Tensor (N.S.) 70(3), 302–310 (2008)
Nagano, T.: On the parallel displacement and parallel vector fields in Finsler geometry. Acta Math. Acad. Paedagog. Nyhazi. 26(2), 349–358 (2010)
Nagano, T.: A note on linear parallel displacements in Finsler geometry. J. Faculty Global Commun. Univ. Nagasaki 12, 195–205 (2011)
Nagano, T.: On the quantities W. L, K derived from linear parallel displacements in Finsler geometry. J. Faculty Global Commun. Univ. Nagasaki 14, 123–132 (2013)
Nagano, T.: On the existence of the curve to give the inverse linear parallel displacement (in Japanese). In: Proceeding of Annual meeting of 2018 The Mathematical Society of Japan, Geometry session, pp. 1–2 (2018)
Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press, Florida (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
6 Appendix
6 Appendix
(1) Calculation of (2) (in p.3)
where
Calculation of (3) (in p.3)
where
Here the indices \(h,i,j,\cdots ,p,q,r,\cdots \) of \(\sum \) run from 1 to \(n(=dimM)\).
(2) Metric tensor field: \(g_{ij}(c,\dot{c})\) ( in p.8.)

(3) Nonlinear Connection: \(N^i_j(c,\dot{c})=\sum _rF^i_{jr}\dot{c}^r\) ( in p.8)

(4) The components \(B_1^1, B_1^2, B_2^1, B_2^2\) of \(\varPi _{c_m}(t)\) ( in p.8)



(5) The components \(E_0, E_1, E_2\) of the energy \(E(v_1)\) ( in p.9)


(6) The components \(V_3^1, V_3^2\) of \(V_3=\varPi _c(\tau )V=(V_3^1,V_3^2)\) ( in p.9)




(7) We explain the concrete example as below
Let \(v=(6806, 2346)\) be a plaintext.
Encryption
\(v_0=d+dv=(8040,7778)\),
\(\tau =3, \beta _0=1\) then \(ct_0=\{5.58763\times 10^{19}, 2.64606\times 10^{18}, 1.47664\times 10^{18}\}\),
\(\tau =3, \beta _1=2\) then \(ct_1=\{8.73996\times 10^{17}, 4.13985\times 10^{16}, 2.31025\times 10^{16}\}\),
\(\tau =3, \beta _2=3\) then \(ct_2=\{7.68363\times 10^{16}, 3.64162\times 10^{15}, 2.03221\times 10^{15}\}\),
then we obtain the \(\text {ciphertext}=\{ct_0,ct_1,ct_2\}\).
Decryption
First, from \(ct_0\),
Further, from \(ct_1\) and \(ct_2\), we have others V. Next, from \(SKX=\{\frac{4}{3}, \frac{24570}{499}X^1, 3822X^2\}\), we can construct \(ct_i\cdot SKX\) as follows:

then we have the following linear system from (7)

and this system is solved unique and the solution \((X^1,X^2)\) is

Next, input the above \((X^1,X^2)\) to the Equations (8) and (16), then we have the equation of \(E(v_1)\)
If we solve this equation, finally we have the integer \(\alpha \) as the value of \(\tau \) as follows
where \(\tau = 3.00000,\ 2.98760\). By using the solution \(\alpha \) to (17), we can obtain the value of \(v_0=(v_0^1,v_0^2)\) and the plaintext \(v=(v^1,v^2)\) as follows:
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Nagano, T., Anada, H. (2021). Approach to Cryptography from Differential Geometry with Example. In: Maimut, D., Oprina, AG., Sauveron, D. (eds) Innovative Security Solutions for Information Technology and Communications. SecITC 2020. Lecture Notes in Computer Science(), vol 12596. Springer, Cham. https://doi.org/10.1007/978-3-030-69255-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-69255-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69254-4
Online ISBN: 978-3-030-69255-1
eBook Packages: Computer ScienceComputer Science (R0)