Skip to main content

Adaptive Graph Learning for Semi-supervised Classification of GCNs

  • Conference paper
  • First Online:
Databases Theory and Applications (ADC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12610))

Included in the following conference series:

Abstract

Graph convolutional networks (GCNs) have achieved great success in social networks and other aspects. However, existing GCN methods generally require a wealth of domain knowledge to obtain the data graph, which cannot guarantee that the graph is suitable. In this paper, we propose adaptive graph learning for semi-supervised classification of GCNs. Firstly, the hypergraph is used to establish the initial neighborhood relationship between data. Then hypergraph, sparse learning and adaptive graph are integrated into a framework. Finally, the suitable graph is obtained, which is inputted into GCN for semi-supervised learning. The experimental results of multi-type datasets show that our method is superior to other comparison algorithms in classification tasks.

This work is supported in part by the National Natural Science Foundation of China (Grant No: 81701780); the Guangxi Natural Science Foundation (Grant No: 2017GXNSFBA198221); the Project of Guangxi Science and Technology (GuiKeAD19110133, GuiKeAD20159041); the Innovation Project of Guangxi Graduate Education (Grants No: YCSW20201008, JXXYYJSCXXM-008); and the Hunan Provincial Science & Technology Project Foundation (2018TP1018, 2018RS3065).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://archive.ics.uci.edu/ml/.

References

  1. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1993–2001 (2016)

    Google Scholar 

  2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003)

    Article  Google Scholar 

  3. Cheng, X., Zhu, Y., Song, J., Wen, G., He, W.: A novel low-rank hypergraph feature selection for multi-view classification. Neurocomputing 253, 115–121 (2017)

    Article  Google Scholar 

  4. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, vol. 29, pp. 3844–3852 (2016)

    Google Scholar 

  5. Fan, K.: On a theorem of Weyl concerning eigenvalues of linear transformations I. Proc. Nat. Acad. Sci. U.S.A. 35(11), 652 (1949)

    Article  MathSciNet  Google Scholar 

  6. Fu, S., Liu, W., Zhou, Y., Nie, L.: HpLapGCN: hypergraph p-Laplacian graph convolutional networks. Neurocomputing 362, 166–174 (2019)

    Article  Google Scholar 

  7. Gao, X., Hu, W., Guo, Z.: Exploring structure-adaptive graph learning for robust semi-supervised classification. In: 2020 IEEE International Conference on Multimedia and Expo, pp. 1–6. IEEE (2020)

    Google Scholar 

  8. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  9. Guo, Y., Wu, Z., Shen, D.: Learning longitudinal classification-regression model for infant hippocampus segmentation. Neurocomputing 391, 191–198 (2020)

    Article  Google Scholar 

  10. Hao, S., Zhou, Y., Guo, Y.: A brief survey on semantic segmentation with deep learning. Neurocomputing 406, 302–321 (2020)

    Article  Google Scholar 

  11. Hu, R., Zhu, X., Zhu, Y., Gan, J.: Robust SVM with adaptive graph learning. World Wide Web 23(3), 1945–1968 (2020)

    Article  Google Scholar 

  12. Jiang, B., Zhang, Z., Lin, D., Tang, J., Luo, B.: Semi-supervised learning with graph learning-convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11313–11320 (2019)

    Google Scholar 

  13. Kang, Z., Pan, H., Hoi, S.C., Xu, Z.: Robust graph learning from noisy data. IEEE Trans. Cybern. 50(5), 1833–1843 (2019)

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  15. Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (2017)

    Google Scholar 

  16. Li, Y., Zhang, S., Cheng, D., He, W., Wen, G., Xie, Q.: Spectral clustering based on hypergraph and self-re-presentation. Multimed. Tools Appl. 76(16), 17559–17576 (2016). https://doi.org/10.1007/s11042-016-4131-6

    Article  Google Scholar 

  17. Nie, F., Wang, X., Jordan, M.I., Huang, H.: The constrained Laplacian rank algorithm for graph-based clustering. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  18. Nie, F., Wei, Z., Li, X.: Unsupervised feature selection with structured graph optimization. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  19. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: International Conference on Machine Learning, pp. 2014–2023 (2016)

    Google Scholar 

  20. Peterson, L.E.: K-nearest neighbor. Scholarpedia 4(2), 1883 (2009)

    Article  Google Scholar 

  21. Qian, X., Huang, H., Chen, X., Huang, T.: Efficient construction of sparse radial basis function neural networks using L1-regularization. Neural Netw. 94, 239–254 (2017)

    Article  Google Scholar 

  22. Shen, H.T., et al.: Heterogeneous data fusion for predicting mild cognitive impairment conversion. Inf. Fusion 66, 54–63 (2021). https://doi.org/10.1016/j.inffus.2020.08.023

    Article  Google Scholar 

  23. Shen, H.T., Zhu, Y., Zheng, W., Zhu, X.: Half-quadratic minimization for unsupervised feature selection on incomplete data. IEEE Trans. Neural Netw. Learn. Syst. (2020). https://doi.org/10.1109/TNNLS.2020.3009632

  24. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=rJXMpikCZ

  25. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234 (2016)

    Google Scholar 

  26. Yadati, N., Nimishakavi, M., Yadav, P., Louis, A., Talukdar, P.: HyperGCN: hypergraph convolutional networks for semi-supervised classification. arXiv preprint arXiv:1809.02589 (2018)

  27. Zhao, Z., Liu, H.: Spectral feature selection for supervised and unsupervised learning. In: Proceedings of the 24th International Conference on Machine Learning, pp. 1151–1157 (2007)

    Google Scholar 

  28. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: Advances in Neural Information Processing Systems, pp. 1601–1608 (2007)

    Google Scholar 

  29. Zhou, Y., Tian, L., Zhu, C., Jin, X., Sun, Y.: Video coding optimization for virtual reality 360-degree source. IEEE J. Sel. Top. Signal Process. 14(1), 118–129 (2019)

    Article  Google Scholar 

  30. Zhu, X., Gan, J., Lu, G., Li, J., Zhang, S.: Spectral clustering via half-quadratic optimization. World Wide Web 23(3), 1969–1988 (2019). https://doi.org/10.1007/s11280-019-00731-8

    Article  Google Scholar 

  31. Zhu, X., et al.: Joint prediction and time estimation of Covid-19 developing severe symptoms using chest CT scan. Med. Image Anal. 67, 101824 (2021)

    Article  Google Scholar 

  32. Zhu, X., Zhang, S., Zhu, Y., Zhu, P., Gao, Y.: Unsupervised spectral feature selection with dynamic hyper-graph learning. IEEE Trans. Knowl. Data Eng. (2020). https://doi.org/10.1109/TKDE.2020.3017250

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangding Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wan, Y., Zhan, M., Li, Y. (2021). Adaptive Graph Learning for Semi-supervised Classification of GCNs. In: Qiao, M., Vossen, G., Wang, S., Li, L. (eds) Databases Theory and Applications. ADC 2021. Lecture Notes in Computer Science(), vol 12610. Springer, Cham. https://doi.org/10.1007/978-3-030-69377-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69377-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69376-3

  • Online ISBN: 978-3-030-69377-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics