Skip to main content

Fast Segmentation of Markov Random Fields Corrupted by Correlated Noise

  • Conference paper
  • First Online:
Advances in Computing Systems and Applications (CSA 2020)

Abstract

Markov Random fields (MRF) represent a powerful mathematical model and they are used in several areas, but it is almost impossible to perform exact analytical calculations when using MRF and we must use approximations and iterative methods that are greedy in terms of time and computing resources. In the literature, proposed MRF methods for Bayesian and parameters estimation are complicated for implementation and represent many disadvantages in practice.

We propose in this work, and in order to remedy the problems mentioned above, a very simple MAP-MRF framework based mainly on local conditional probabilities, contrary to the existing solutions in literature where we rely on the energy function model.

Two powerful models based on the proposed framework are then presented. They will be compared with two recent works to show how they are more efficient with respect to classical models when it comes to the unsupervised segmentation of corrupted data with correlated noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, L., Li, M., Boudaren, M.E.Y., Pieczynski, W.: Unsupervised segmentation of hidden Markov fields corrupted by correlated non-gaussian noise. Int. J. Approximate Reasoning 102, 41–59 (2018). https://doi.org/10.1016/j.ijar.2018.08.001

    Article  MathSciNet  MATH  Google Scholar 

  2. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. Roy. Stat. Soc. Ser. B (Methodological) 36(2), 192–225 (1974). https://doi.org/10.1111/j.2517-6161.1974.tb00999.x

    Article  MathSciNet  MATH  Google Scholar 

  3. Besag, J.: Efficiency of pseudolikelihood estimation for simple Gaussian fields. Biometrika 64(3), 616–618 (1977). https://doi.org/10.1093/biomet/64.3.616

    Article  MathSciNet  MATH  Google Scholar 

  4. Besag, J.: On the statistical analysis of dirty pictures. J. Roy. Stat. Soc. Ser. B (Methodological) 48(3), 259–279 (1986). https://doi.org/10.1111/j.2517-6161.1986.tb01412.x

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouman, C.A., Shapiro, M.: A multiscale random field model for Bayesian image segmentation. IEEE Trans. Image Process. 3(2), 162–177 (1994). https://doi.org/10.1109/83.277898

    Article  Google Scholar 

  6. Derin, H., Elliott, H.: Modeling and segmentation of noisy and textured images using gibbs random fields. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–9(1), 39–55 (1987). https://doi.org/10.1109/TPAMI.1987.4767871

    Article  Google Scholar 

  7. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–6(6), 721–741 (1984). https://doi.org/10.1109/TPAMI.1984.4767596

    Article  MATH  Google Scholar 

  8. Geman, S., Graffigne, C.: Markov random field image models and their applications to computer vision. In: Gleason, A.M. (ed.) ICM 1986, Proceedings of the International Congress of Mathematicians, vol. 1, pp. 1496–1517. American Mathematical Society, Berkeley (1986)

    Google Scholar 

  9. Habbouchi, A., Boudaren, M.E.Y., Aissani, A., Pieczynski, W.: Unsupervised segmentation of Markov random fields corrupted by nonstationary noise. IEEE Signal Process. Lett. 23(11), 1607–1611 (2016). https://doi.org/10.1109/lsp.2016.2609887

    Article  Google Scholar 

  10. Li, S.Z.: Markov Random Field Modeling in Image Analysis. Springer, Tokyo (2001). https://doi.org/10.1007/978-4-431-67044-5

  11. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. Tech. rep. (1953). https://doi.org/10.2172/4390578

    Article  MATH  Google Scholar 

  12. Parisi, G., Machta, J.: Statistical field theory. Am. J. Phys. 57(3), 286–287 (1989). https://doi.org/10.1119/1.16061

    Article  Google Scholar 

  13. Pereyra, M., McLaughlin, S.: Fast unsupervised Bayesian image segmentation with adaptive spatial regularisation. IEEE Trans. Image Process. 26(6), 2577–2587 (2017). https://doi.org/10.1109/tip.2017.2675165

    Article  MathSciNet  MATH  Google Scholar 

  14. Qian, W., Titterington, D.: Stochastic relaxations and EM algorithms for Markov random fields. J. Stat. Comput. Simul. 40(1–2), 55–69 (1992). https://doi.org/10.1080/00949659208811365

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Habbouchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Habbouchi, A., Boudaren, M.E.Y., Aïssani, A., Pieczynski, W. (2021). Fast Segmentation of Markov Random Fields Corrupted by Correlated Noise. In: Senouci, M.R., Boudaren, M.E.Y., Sebbak, F., Mataoui, M. (eds) Advances in Computing Systems and Applications. CSA 2020. Lecture Notes in Networks and Systems, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-030-69418-0_30

Download citation

Publish with us

Policies and ethics