Skip to main content

ISO Setting Estimation Based on Convolutional Neural Network and its Application in Image Forensics

  • Conference paper
  • First Online:
Digital Forensics and Watermarking (IWDW 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12617))

Included in the following conference series:

Abstract

The ISO setting, which is also known as film speed, influences the noise characteristics of output images. As a consequence, it plays an important role in noise based forensics. Whenever the ISO setting information cannot be retrieved from the image metadata, estimating the ISO setting of a probe image from its content is of forensic significance. In this work, we propose a convolutional neural network, called ISONet, for ISO setting estimation. The proposed ISONet can successfully infer the ISO setting both globally (image-level) and locally (patch-level). It not only works on uncompressed images, but also is effective on JPEG compressed images. We apply the ISONet on two typical forensic scenarios, one is the image splicing localization and the other is the Photo Response Non-Uniformity (PRNU) correlation prediction. A series of experiments show that the ISONet can yield a remarkable improvement in both forensic scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Source code is available at https://github.com/zengh5/ISONet.

  2. 2.

    The implementation of [13] is available in https://github.com/zengh5/Exposing-splicing-sensor-noise, and the implementations of [21, 23] are available in https://github.com/MKLab-ITI/image-forensics/tree/master/matlab_toolbox.

  3. 3.

    Source code is available at https://github.com/pkorus/multiscale-prnu.

  4. 4.

    For an ISO400 image of JPEG format, the PRNU signal is very weak even in the pristine area. Thus, the threshold here is much lower than that used in camera identification.

References

  1. Stamm, M.C., Wu, M., Liu, K.J.R.: Information forensics: an overview of the first decade. IEEE Access 1, 167–200 (2013)

    Article  Google Scholar 

  2. Böhme, R., Kirchner, M.: Media forensics. In: Katzenbeisser, S., Petitcolas, F. (eds.) Information Hiding, pp. 231–259. Artech House (2016)

    Google Scholar 

  3. Korus, P.: Digital image integrity – a survey of protection and verification techniques. Digit. Signal Process. 71, 1–26 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bahrami, K., Kot, A.C., Li, L., Li, H.: Blurred image splicing localization by exposing blur type inconsistency. IEEE Trans. Inf. Forensics Secur. 10(5), 999–1009 (2015)

    Article  Google Scholar 

  5. Chen, J., Kang, X., Liu, Y., Wang, Z.J.: Median filtering forensics based on convolutional neural networks. IEEE Signal Process. Lett. 22(11), 1849–1853 (2015)

    Article  Google Scholar 

  6. Popescu, C., Farid, H.: Exposing digital forgeries by detecting traces of resampling. IEEE Trans. Signal Process. 53(2), 758–767 (2005)

    Article  MathSciNet  Google Scholar 

  7. Lin, X., Li, C.T., Hu, Y.: Exposing image forgery through the detection of contrast enhancement. In: Proceedings of IEEE International Conference on Image Processing, pp. 4467–4471 (2013)

    Google Scholar 

  8. Bianchi, T., Piva, A.: Image forgery localization via block-grained analysis of JPEG artifacts. IEEE Trans. Inf. Forensics Secur. 7(3), 1003–1017 (2012)

    Article  Google Scholar 

  9. Lukas, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 1, 205–214 (2006)

    Article  Google Scholar 

  10. Jeon, J.J., Shin, H.J., Eom, I.K.: Estimation of Bayer CFA pattern configuration based on singular value decomposition. EURASIP J. Image Video Process. 2017(1), 1–11 (2017). https://doi.org/10.1186/s13640-017-0196-z

    Article  Google Scholar 

  11. Uchida, K., Tanaka, M., Okutomi, M.: Pixelwise JPEG compression detection and quality factor estimation based on convolutional neural network. In: Proceedings of IS&T International Symposium on Electronic Imaging, p. 276 (2019)

    Google Scholar 

  12. Petteri, O.M.: Dependence of the parameters of digital image noise model on ISO number, temperature and shutter time. Project work report (2008). https://www.cs.tut.fi/~foi/MobileImagingReport_PetteriOjala_Dec2008.pdf

  13. Zeng, H., Peng, A., Lin, X.: Exposing image splicing with inconsistent sensor noise levels. Multimed. Tools Appl. 79(35–36), 26139–26154 (2020). https://doi.org/10.1007/s11042-020-09280-z

    Article  Google Scholar 

  14. Quan, Y., Li, C.: On addressing the impact of ISO speed upon PRNU and forgery detection. IEEE Trans. Inf. Forensics Secur. 16, 190–202 (2021)

    Article  Google Scholar 

  15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  16. Cozzolino, D., Verdoliva, L.: Noiseprint: a CNN-based camera model fingerprint. IEEE Trans. Inf. Forensics Secur. 15, 144–159 (2020)

    Article  Google Scholar 

  17. Kirchner, M., Johnson, C.: SPN-CNN: boosting sensor-based source camera attribution with deep learning. In: 2019 IEEE International Workshop on Information Forensics and Security, pp. 1–6 (2019)

    Google Scholar 

  18. Chakraborty, S.: A CNN-based correlation predictor for PRNU-based image manipulation localization. In: Proceedings of IS&T International Symposium on Electronic Imaging, p. 078 (2020)

    Google Scholar 

  19. Rao, Y., Ni, J.: A deep learning approach to detection of splicing and copy-move forgeries in images. In: 2016 IEEE International Workshop on Information Forensics and Security, pp. 1–6 (2016)

    Google Scholar 

  20. Bayar, B., Stamm, M.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: ACM Workshop on Information Hiding and Multimedia Security, pp. 5–10 (2016)

    Google Scholar 

  21. Mahdian, B., Saic, S.: Using noise inconsistencies for blind image forensics. Image Vis. Comput. 27(10), 1497–1503 (2009)

    Article  Google Scholar 

  22. Lyu, S., Pan, X., Zhang, X.: Exposing region splicing forgeries with blind local noise estimation. Int. J. Comput. Vision 110(2), 202–221 (2014)

    Article  Google Scholar 

  23. Zeng, H., Zhan, Y., Kang, X., Lin, X.: Image splicing localization using PCA-based noise level estimation. Multimed. Tools Appl. 76(4), 4783–4799 (2016). https://doi.org/10.1007/s11042-016-3712-8

    Article  Google Scholar 

  24. Yao, H., Cao, F., Tang, Z., Wang, J., Qiao, T.: Expose noise level inconsistency incorporating the inhomogeneity scoring strategy. Multimed. Tools Appl. 77(14), 18139–18161 (2017). https://doi.org/10.1007/s11042-017-5206-8

    Article  Google Scholar 

  25. Zhu, N., Li, Z.: Blind image splicing detection via noise level function. Signal Process: Image Commun. 68, 181–192 (2018)

    Google Scholar 

  26. Zhang, D., Wang, X., Zhang, M., Hu, J.: Image splicing localization using noise distribution characteristic. Multimed. Tools Appl. 78(16), 22223–22247 (2019). https://doi.org/10.1007/s11042-019-7408-8

    Article  Google Scholar 

  27. Chen, M., Fridrich, J., Goljan, M., Lukas, J.: Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 3(1), 74–90 (2008)

    Article  Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representations (2015). https://arxiv.org/abs/1409.1556

  29. Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1712–1722 (2019)

    Google Scholar 

  30. Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) Information Hiding. IH 2011. Lecture Notes in Computer Science, vol. 6958. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_5.

  31. Kingma, D.P., Ba, J.L.: ADAM: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations, p. 15 (2015)

    Google Scholar 

  32. Gloe, T., Bohme, R.: The Dresden image database for benchmarking digital image forensics. J. Digit. Forensic Pract. 3(2–4), 150–159 (2010)

    Article  Google Scholar 

  33. Quan, Y., Li, C.-T., Zhou, Y., Li, L.: Warwick image forensics dataset for device fingerprinting in multimedia forensics. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2020)

    Google Scholar 

  34. Korus, P., Huang, J.: Multi-scale analysis strategies in PRNU-based tampering localization. IEEE Trans. Inf. Forensics Secur. 12(4), 809–824 (2017)

    Article  Google Scholar 

  35. Goljan, M.: Digital camera identification from images–estimating false acceptance probability. In: Kim, H.J., Katzenbeisser, S., Ho, A.T.S. (eds.) Digital Watermarking. IWDW 2008. Lecture Notes in Computer Science, vol. 5450. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04438-0_38

Download references

Acknowledgment

We would like to thank Dr. M. Goljan for helping us in revising this manuscript, to thank the authors of [34] for their open source codes, and to thank the authors of [33] for sharing their high ISO image dataset. We would also like to thank the anonymous reviewers for their helpful suggestions. This work was supported by NSFC (grant no. 61702429), China Scholarship Council (no. 201908515095), and the Research Fund for the Doctoral Program of Southwest University of Science and Technology University (grant no. 18zx7163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjie Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, H., Deng, K., Peng, A. (2021). ISO Setting Estimation Based on Convolutional Neural Network and its Application in Image Forensics. In: Zhao, X., Shi, YQ., Piva, A., Kim, H.J. (eds) Digital Forensics and Watermarking. IWDW 2020. Lecture Notes in Computer Science(), vol 12617. Springer, Cham. https://doi.org/10.1007/978-3-030-69449-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69449-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69448-7

  • Online ISBN: 978-3-030-69449-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics