Skip to main content

The Disease Spreading Analysis on the Grouped Network

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12599))

  • 425 Accesses

Abstract

The numerical studies of disease spreading processes are almost one-century old. The mainstream of these analyses is based on the ordinary differential equations which enable to estimate, especially, the epidemic curves for some assumed values of parameters describing the aggregate probabilities of passing through different phases if illness. In our paper, we present some results which can be obtained for the more individualized model, based on the analysis of direct interactions between the members of the community. We use the concepts of the SEIR model but we apply the different mechanisms to study the process of transfer of illness based on the representation of the community as the scale-free network. We can obtain the typical epidemic curves, study their spread, and also analyze the epidemic process in the internal groups of the community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kermack, W.O., McKendrick, A., Walker, G.T.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A115, 700–721 (1927)

    MATH  Google Scholar 

  2. Nakamura, G., Martinez, A.: Hamiltonian dynamics of the SIS epidemic model with stochastic fluctuations. Sci. Rep. 9, 1–9 (2019)

    Article  Google Scholar 

  3. Sirakoulis, G., Karafyllidis, I., Thanailakis, A.: A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecol. Model. 133, 209–223 (2000)

    Article  Google Scholar 

  4. Holko, A., Mędrek, M., Pastuszak, Z., Phusavat, K.: Epidemiological modeling with a population density map-based cellular automata simulation system. Expert Syst. Appl. 48, 1–8 (2016)

    Article  Google Scholar 

  5. Ferguson, N., Cummings, D., Fraser, C., Cajka, J., Cooley, P., Burke, D.: Strategies for mitigating an influenza pandemic. Nature 442, 448–452 (2006)

    Article  Google Scholar 

  6. Ferguson, N., et al.: Impact of non-pharmaceutical interventions (NPIS) to reduce covid19 mortality and healthcare demand. Technical report, Imperial College London (2020)

    Google Scholar 

  7. Aron, J.L., Schwartz, I.B.: Seasonality and period-doubling bifurcations in an epidemic model. J. Theor. Biol. 110, 665–679 (1984)

    Article  MathSciNet  Google Scholar 

  8. Erdös, P., Rényi, A.: On random graphs I. Publicationes Mathematicae Debrecen 6, 290 (1959)

    MathSciNet  MATH  Google Scholar 

  9. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  10. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  11. Gwizdałła, T.M.: Viral disease spreading in grouped population. Comput. Methods Programs Biomed. 197, 105715 (2020)

    Article  Google Scholar 

  12. Linton, N.M., et al.: Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J. Clin. Med. 9(2020), 538 (2019)

    Google Scholar 

  13. Orzechowska, J., Fordon, D., Gwizdałła, T.M.: Size effect in cellular automata based disease spreading model. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds.) ACRI 2018. LNCS, vol. 11115, pp. 146–153. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99813-8_13

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz M. Gwizdałła .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gwizdałła, T.M., Lepa, K. (2021). The Disease Spreading Analysis on the Grouped Network. In: Gwizdałła, T.M., Manzoni, L., Sirakoulis, G.C., Bandini, S., Podlaski, K. (eds) Cellular Automata. ACRI 2020. Lecture Notes in Computer Science(), vol 12599. Springer, Cham. https://doi.org/10.1007/978-3-030-69480-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69480-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69479-1

  • Online ISBN: 978-3-030-69480-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics