Skip to main content

EnCash: an Authenticated Encryption scheme using Cellular Automata

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12599))

  • 439 Accesses

Abstract

In this paper, we present a new Cellular Automata (CA) based authenticated encryption scheme, named as EnCash. Both for encryption and authentication, it proposes a CA-based cost-effective design structure. Encryption follows the substitution-permutation-network (SPN) where, at the substitution layer, randomized mapping is introduced and cellular automata, both linear and non-linear are used for the permutation. We perform the cryptanalysis of the substitution table and also the Strict Avalanche Criterion test for the encryption function. The results assure the security of EnCash.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banerjee, T., Das, B., Mehta, D., RoyChowdhury, D.: RACE: randomized counter mode of authenticated encryption using cellular automata. In: Obaidat, M.S., Samarati, P. (eds.) Proceedings of the 16th International Joint Conference on e-Business and Telecommunications, ICETE 2019 - Volume 2: SECRYPT, Prague, Czech Republic, 26–28 July 2019, pp. 504–509. SciTePress (2019). https://doi.org/10.5220/0007971505040509

  2. Banerjee, T., Chowdhury, D.R.: On the security of the double-block-length hash function NCASH. In: Shankar Sriram, V.S., Subramaniyaswamy, V., Sasikaladevi, N., Zhang, L., Batten, L., Li, G. (eds.) ATIS 2019. CCIS, vol. 1116, pp. 266–278. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0871-4_21

    Chapter  Google Scholar 

  3. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_24

    Chapter  MATH  Google Scholar 

  4. Dworkin, M.J.: Recommendation for block cipher modes of operation: Galois/Counter Mode (GCM) and GMAC. Technical report (2007)

    Google Scholar 

  5. Feistel, H.: Cryptography and computer privacy. Sci. Am. 228(5), 15–23 (1973)

    Article  Google Scholar 

  6. Forrié, R.: The strict avalanche criterion: spectral properties of boolean functions and an extended definition. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 450–468. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_31

    Chapter  Google Scholar 

  7. Ghosh, S., Sengupta, A., Saha, D., Chowdhury, D.R.: A scalable method for constructing non-linear cellular automata with period \(2^n-1\). In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 65–74. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11520-7_8

    Chapter  Google Scholar 

  8. Heys, H.M.: A tutorial on linear and differential cryptanalysis. Cryptologia 26(3), 189–221 (2002)

    Article  Google Scholar 

  9. Hortensius, P.D., McLeod, R.D., Pries, W., Miller, D.M., Card, H.C.: Cellular automata-based pseudorandom number generators for built-in self-test. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 8(8), 842–859 (1989)

    Article  Google Scholar 

  10. McGrew, D., Viega, J.: The Galois/Counter Mode of operation (GCM). Submission to NIST Modes of Operation Process, vol. 20 (2004)

    Google Scholar 

  11. Mukherjee, M., Ganguly, N., Chaudhuri, P.P.: Cellular automata based authentication (CAA). In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 259–269. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45830-1_25

    Chapter  MATH  Google Scholar 

  12. NIST: Information Technology Laboratory: CSRC, Block Cipher Techniques: Current Modes (2020). https://csrc.nist.gov/projects/block-cipher-techniques/bcm/current-modes. (Created 04 January 2017, Updated 22 June 2020)

  13. Chaudhuri, P.P., Chowdhury, D.R., Nandi, S., Chattopadhyay, S.: Additive Cellular Automata: Theory and Applications, vol. 1. Wiley, Hoboken (1997)

    MATH  Google Scholar 

  14. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST Special Publication 800–22. Technical report, Booz-Allen and Hamilton Inc Mclean Va (2001)

    Google Scholar 

  15. Saarinen, M.O.: GCM, GHASH and weak keys. IACR Cryptology ePrint Archive. 2011, 202 (2011). http://eprint.iacr.org/2011/202

  16. Stinson, D.R.: Cryptography: Theory and Practice. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  17. Webster, A.F., Tavares, S.E.: On the design of S-boxes. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_41

    Chapter  Google Scholar 

  18. Wu, H.: ACORN: a lightweight authenticated cipher (v3). Candidate for the CAESAR Competition (2016). https://competitions.cr.yp.to/round3/acornv3.pdf

  19. Wu, H., Preneel, B.: AEGIS: a fast authenticated encryption algorithm. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 185–201. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7_10

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapadyoti Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banerjee, T., Roy Chowdhury, D. (2021). EnCash: an Authenticated Encryption scheme using Cellular Automata. In: Gwizdałła, T.M., Manzoni, L., Sirakoulis, G.C., Bandini, S., Podlaski, K. (eds) Cellular Automata. ACRI 2020. Lecture Notes in Computer Science(), vol 12599. Springer, Cham. https://doi.org/10.1007/978-3-030-69480-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69480-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69479-1

  • Online ISBN: 978-3-030-69480-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics