Abstract
We propose a learning-based multi-view stereo (MVS) method in scattering media such as fog or smoke with a novel cost volume, called the dehazing cost volume. An image captured in scattering media degrades due to light scattering and attenuation caused by suspended particles. This degradation depends on scene depth; thus it is difficult for MVS to evaluate photometric consistency because the depth is unknown before three-dimensional reconstruction. Our dehazing cost volume can solve this chicken-and-egg problem of depth and scattering estimation by computing the scattering effect using swept planes in the cost volume. Experimental results on synthesized hazy images indicate the effectiveness of our dehazing cost volume against the ordinary cost volume regarding scattering media. We also demonstrated the applicability of our dehazing cost volume to real foggy scenes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Furukawa, Y., Hernández, C.: Multi-view stereo: a tutorial. Found. Trends® Comput. Graph. Vis. 9, 1–148 (2015)
Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstructured multi-view stereo. In: The European Conference on Computer Vision (ECCV), pp. 767–783 (2018)
Huang, P., Matzen, K., Kopf, J., Ahuja, N., Huang, J.: DeepMVS: learning multi-view stereopsis. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2821–2830 (2018)
Im, S., Jeon, H., Lin, S., Kweon, I.S.: DPSNet: end-to-end deep plane sweep stereo (2019)
Wang, K., Shen, S.: Mvdepthnet: real-time multiview depth estimation neural network. In: International Conference on 3D Vision (3DV), pp. 248–257 (2018)
Collins, R.T.: A space-sweep approach to true multi-image matching. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 358–363 (1996)
Zheng, E., Dunn, E., Jojic, V., Frahm, J.: PatchMatch based joint view selection and depthmap estimation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1510–1517 (2014)
Schönberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.: Pixelwise view selection for unstructured multi-view stereo. In: The European Conference on Computer Vision (ECCV), pp. 501–518 (2016)
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2341–2353 (2011)
Nishino, K., Kratz, L., Lombardi, S.: Bayesian defogging. Int. J. Comput. Vision 98, 263–278 (2012)
Fattal, R.: Dehazing using color-lines. ACM Trans. Graph. (TOG) 34, 1–14 (2014)
Berman, D., Treibitz, T., Avidan, S.: Non-local image dehazing. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1674–1682 (2016)
Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25, 5187–5198 (2016)
Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10
Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3194–3203 (2018)
Yang, D., Sun, J.: Proximal Dehaze-Net: a prior learning-based deep network for single image dehazing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 729–746. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_43
Liu, Y., Pan, J., Ren, J., Su, Z.: Learning deep priors for image dehazing. In: The IEEE International Conference on Computer Vision (ICCV), pp. 2492–2500 (2019)
Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: FFA-Net: feature fusion attention network for single image dehazing. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2020), pp. 11908–11915 (2020)
Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: AOD-Net: all-in-one dehazing network. In: The IEEE International Conference on Computer Vision (ICCV), pp. 4770–4778 (2017)
Narasimhan, S.G., Nayar, S.K., Sun, B., Koppal, S.J.: Structured light in scattering media. In: Proceedings of the Tenth IEEE International Conference on Computer Vision, vol. I, pp. 420–427 (2005)
Tsiotsios, C., Angelopoulou, M.E., Kim, T., Davison, A.J.: Backscatter compensated photometric stereo with 3 sources. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2259–2266 (2014)
Murez, Z., Treibitz, T., Ramamoorthi, R., Kriegman, D.J.: Photometric stereo in a scattering medium. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1880–1891 (2017)
Fujimura, Y., Iiyama, M., Hashimoto, A., Minoh, M.: Photometric stereo in participating media considering shape-dependent forward scatter. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7445–7453 (2018)
Heide, F., Xiao, L., Kolb, A., Hullin, M.B., Heidrich, W.: Imaging in scattering media using correlation image sensors and sparse convolutional coding. Opt. Express 22, 26338–26350 (2014)
Satat, G., Tancik, M., Rasker, R.: Towards photography through realistic fog. In: The IEEE International Conference on Computational Photography (ICCP), pp. 1–10 (2018)
Wang, J., Bartels, J., Whittaker, W., Sankaranarayanan, A.C., Narasimhan, S.G.: Programmable triangulation light curtains. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 20–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_2
Caraffa, L., Tarel, J.: Stereo reconstruction and contrast restoration in daytime fog. In: Asian Conference on Computer Vision (ACCV), pp. 13–25 (2012)
Song, T., Kim, Y., Oh, C., Sohn, K.: Deep network for simultaneous stereo matching and dehazing. In: British Machine Vision Conference (BMVC) (2018)
Li, Z., Tan, P., Tang, R.T., Zou, D., Zhou, S.Z., Cheong, L.: Simultaneous video defogging and stereo reconstruction. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4988–4997 (2015)
Tan, R.T.: Visibility in bad weather from a single image. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)
Berman, D., Treibitz, T., Avidan, S.: Air-light estimation using haze-lines. In: The IEEE International Conference on Computational Photography (ICCP) (2017)
Ummenhofer, B., et al.: DeMoN: depth and motion network for learning monocular stereo. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5038–5047 (2017)
Xiao, J., Owens, A., Torralba, A.: SUN3D: a database of big spaces reconstructed using SFM and object labels. In: The IEEE International Conference on Computer Vision (ICCV), pp. 1625–1632 (2013)
Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: The International Conference on Intelligent Robot Systems (IROS) (2012)
Fuhrmann, S., Langguth, F., Goesel, M.: MVE: a multi-view reconstruction environment. Eurographics Workshop on Graphics and Cultural Heritage, pp. 11–18 (2014)
Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv:1512.03012 (2015)
Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Twenty-eighth Conference on Neural Information Processing Systems (NeurIPS) (2014)
Tateno, K., Tombari, F., Laina, I., Navab, N.: CNN-SLAM: real-time dense monocular slam with learned depth prediction. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6243–6252 (2017)
Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4104–4113 (2016)
Gur, S., Wolf, L.: Single image depth estimation trained via depth from defocus cues. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7683–7692 (2019)
Maximov, M., Galim, K., Leal-Taixe, L.: Focus on defocus: bridging the synthetic to real domain gap for depth estimation. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1071–1080 (2020)
Acknowledgements
This work was supported by JSPS KAKENHI Grant Number 18H03263 and 19J10003.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Fujimura, Y., Sonogashira, M., Iiyama, M. (2021). Dehazing Cost Volume for Deep Multi-view Stereo in Scattering Media. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12622. Springer, Cham. https://doi.org/10.1007/978-3-030-69525-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-69525-5_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69524-8
Online ISBN: 978-3-030-69525-5
eBook Packages: Computer ScienceComputer Science (R0)