Skip to main content

Learning Global Pose Features in Graph Convolutional Networks for 3D Human Pose Estimation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12622))

Included in the following conference series:

Abstract

As the human body skeleton can be represented as a sparse graph, it is natural to exploit graph convolutional networks (GCNs) to model the articulated body structure for 3D human pose estimation (HPE). However, a vanilla graph convolutional layer, the building block of a GCN, only models the local relationships between each body joint and their neighbors on the skeleton graph. Some global attributes, e.g., the action of the person, can be critical to 3D HPE, especially in the case of occlusion or depth ambiguity. To address this issue, this paper introduces a new 3D HPE framework by learning global pose features in GCNs. Specifically, we add a global node to the graph and connect it to all the body joint nodes. On one hand, global features are updated by aggregating all body joint features to model the global attributes. On the other hand, the feature update of each body joint depends on not only their neighbors but also the global node. Furthermore, we propose a heterogeneous multi-task learning framework to learn the local and global features. While each local node regresses the 3D coordinate of the corresponding body joint, we force the global node to classify an action category or learn a low-dimensional pose embedding. Experimental results demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2640–2649 (2017)

    Google Scholar 

  2. Moon, G., Chang, J.Y., Lee, K.M.: Camera distance-aware top-down approach for 3D multi-person pose estimation from a single RGB image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 10133–10142 (2019)

    Google Scholar 

  3. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7025–7034 (2017)

    Google Scholar 

  4. Qiu, H., Wang, C., Wang, J., Wang, N., Zeng, W.: Cross view fusion for 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4342–4351 (2019)

    Google Scholar 

  5. Cai, Y., et al.: Exploiting spatial-temporal relationships for 3D pose estimation via graph convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2272–2281 (2019)

    Google Scholar 

  6. Arnab, A., Doersch, C., Zisserman, A.: Exploiting temporal context for 3D human pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3395–3404 (2019)

    Google Scholar 

  7. Rayat Imtiaz Hossain, M., Little, J.J.: Exploiting temporal information for 3D human pose estimation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 68–84 (2018)

    Google Scholar 

  8. Dong, J., Jiang, W., Huang, Q., Bao, H., Zhou, X.: Fast and robust multi-person 3D pose estimation from multiple views. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7792–7801 (2019)

    Google Scholar 

  9. Li, C., Lee, G.H.: Generating multiple hypotheses for 3D human pose estimation with mixture density network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9887–9895 (2019)

    Google Scholar 

  10. Zhou, K., Han, X., Jiang, N., Jia, K., Lu, J.: HEMlets Pose: learning part-centric heatmap triplets for accurate 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2344–2353 (2019)

    Google Scholar 

  11. Zhao, L., Peng, X., Tian, Y., Kapadia, M., Metaxas, D.N.: Semantic graph convolutional networks for 3D human pose regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3425–3435 (2019)

    Google Scholar 

  12. Wang, J., Huang, S., Wang, X., Tao, D.: Not all parts are created equal: 3D pose estimation by modeling bi-directional dependencies of body parts. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7771–7780 (2019)

    Google Scholar 

  13. Tekin, B., Katircioglu, I., Salzmann, M., Lepetit, V., Fua, P.: Structured prediction of 3D human pose with deep neural networks. arXiv preprint arXiv:1605.05180 (2016)

  14. Agarwal, A., Triggs, B.: 3D human pose from silhouettes by relevance vector regression. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, p. II. IEEE (2004)

    Google Scholar 

  15. Zhao, X., Ning, H., Liu, Y., Huang, T.: Discriminative estimation of 3D human pose using gaussian processes. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4. IEEE (2008)

    Google Scholar 

  16. Pavlakos, G., Zhou, X., Daniilidis, K.: Ordinal depth supervision for 3D human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7307–7316 (2018)

    Google Scholar 

  17. Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y.: Towards 3D human pose estimation in the wild: a weakly-supervised approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 398–407 (2017)

    Google Scholar 

  18. Sun, X., Shang, J., Liang, S., Wei, Y.: Compositional human pose regression. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2602–2611 (2017)

    Google Scholar 

  19. Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 529–545 (2018)

    Google Scholar 

  20. Yang, W., Ouyang, W., Wang, X., Ren, J., Li, H., Wang, X.: 3D human pose estimation in the wild by adversarial learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5255–5264 (2018)

    Google Scholar 

  21. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  22. Zhou, J., et al.: Graph neural networks: a review of methods and applications. arXiv preprint arXiv:1812.08434 (2018)

  23. Ci, H., Wang, C., Ma, X., Wang, Y.: Optimizing network structure for 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2262–2271 (2019)

    Google Scholar 

  24. Agarwal, A., Triggs, B.: Recovering 3D human pose from monocular images. IEEE Trans. Pattern Anal. Mach. Intell. 28, 44–58 (2005)

    Article  Google Scholar 

  25. Rogez, G., Rihan, J., Ramalingam, S., Orrite, C., Torr, P.H.: Randomized trees for human pose detection. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  26. Ionescu, C., Li, F., Sminchisescu, C.: Latent structured models for human pose estimation. In: 2011 International Conference on Computer Vision, pp. 2220–2227. IEEE (2011)

    Google Scholar 

  27. Chen, X., Lin, K.Y., Liu, W., Qian, C., Lin, L.: Weakly-supervised discovery of geometry-aware representation for 3D human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10895–10904 (2019)

    Google Scholar 

  28. Liu, K., Ding, R., Zou, Z., Wang, L., Tang, W.: A comprehensive study of weight sharing in graph networks for 3D human pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 318–334. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_19

    Chapter  Google Scholar 

  29. Zou, Z., Liu, K., Wang, L., Tang, W.: High-order graph convolutional networks for 3D human pose estimation. In: BMVC (2020)

    Google Scholar 

  30. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1263–1272. JMLR.org (2017)

    Google Scholar 

  31. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  32. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261 (2018)

  33. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  34. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1325–1339 (2013)

    Article  Google Scholar 

  35. Mehta, D., et al.: Monocular 3D human pose estimation in the wild using improved CNN supervision. In: 2017 Fifth International Conference on 3D Vision (3DV). IEEE (2017)

    Google Scholar 

  36. Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7753–7762 (2019)

    Google Scholar 

  37. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  38. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  39. Tekin, B., Márquez-Neila, P., Salzmann, M., Fua, P.: Learning to fuse 2D and 3D image cues for monocular body pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3941–3950 (2017)

    Google Scholar 

  40. Fang, H.S., Xu, Y., Wang, W., Liu, X., Zhu, S.C.: Learning pose grammar to encode human body configuration for 3D pose estimation. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  41. Sharma, S., Varigonda, P.T., Bindal, P., Sharma, A., Jain, A.: Monocular 3D human pose estimation by generation and ordinal ranking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2325–2334 (2019)

    Google Scholar 

  42. Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7103–7112 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by Wei Tang’s startup funds from the University of Illinois at Chicago and the National Science Foundation (NSF) award CNS-1828265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, K., Zou, Z., Tang, W. (2021). Learning Global Pose Features in Graph Convolutional Networks for 3D Human Pose Estimation. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12622. Springer, Cham. https://doi.org/10.1007/978-3-030-69525-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69525-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69524-8

  • Online ISBN: 978-3-030-69525-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics