Skip to main content

Frequency Attention Network: Blind Noise Removal for Real Images

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12623))

Included in the following conference series:

Abstract

With outstanding feature extraction capabilities, deep convolutional neural networks (CNNs) have achieved extraordinary improvements in image denoising tasks. However, because of the difference of statistical characteristics of signal-dependent noise and signal-independent noise, it is hard to model real noise for training and blind real image denoising is still an important challenge problem. In this work we propose a method for blind image denoising that combines frequency domain analysis and attention mechanism, named frequency attention network (FAN). We adopt wavelet transform to convert images from spatial domain to frequency domain with more sparse features to utilize spectral information and structure information. For the denoising task, the objective of the neural network is to estimate the optimal solution of the wavelet coefficients of the clean image by nonlinear characteristics, which makes FAN possess good interpretability. Meanwhile, spatial and channel mechanisms are employed to enhance feature maps at different scales for capturing contextual information. Extensive experiments on the synthetic noise dataset and two real-world noise benchmarks indicate the superiority of our method over other competing methods at different noise type cases in blind image denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, C., Szeliski, R., Bing Kang, S., Zitnick, C.L., Freeman, W.T.: Automatic estimation and removal of noise from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 30, 299–314 (2007)

    Article  Google Scholar 

  2. Wang, W., Chen, X., Yang, C., Li, X., Hu, X., Yue, T.: Enhancing low light videos by exploring high sensitivity camera noise. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4111–4119 (2019)

    Google Scholar 

  3. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  4. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  5. Lebrun, M., Buades, A., Morel, J.M.: A nonlocal Bayesian image denoising algorithm. SIAM J. Imaging Sci. 6, 1665–1688 (2013)

    Article  MathSciNet  Google Scholar 

  6. Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90, 1200–1224 (1995)

    Article  MathSciNet  Google Scholar 

  7. Yu, G., Sapiro, G.: DCT image denoising: a simple and effective image denoising algorithm. Image Process. On Line 1, 292–296 (2011)

    Google Scholar 

  8. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26, 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  9. Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27, 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  10. Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4539–4547 (2017)

    Google Scholar 

  11. Lehtinen, J., et al.: Noise2Noise: learning image restoration without clean data. In: International Conference on Machine Learning, pp. 2965–2974 (2018)

    Google Scholar 

  12. Zhang, Y., Li, K., Li, K., Zhong, B., Fu, Y.: Residual non-local attention networks for image restoration. In: International Conference on Learning Representations (2019)

    Google Scholar 

  13. Jia, X., Liu, S., Feng, X., Zhang, L.: FOCNet: a fractional optimal control network for image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6054–6063 (2019)

    Google Scholar 

  14. Yin, D., Lopes, R.G., Shlens, J., Cubuk, E.D., Gilmer, J.: A fourier perspective on model robustness in computer vision. In: Advances in Neural Information Processing Systems, pp. 13255–13265 (2019)

    Google Scholar 

  15. Kim, J., Lee, S.: Deep learning of human visual sensitivity in image quality assessment framework. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1676–1684 (2017)

    Google Scholar 

  16. Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1712–1722 (2019)

    Google Scholar 

  17. Foi, A., Katkovnik, V., Egiazarian, K.: Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images. IEEE Trans. Image Process. 16, 1395–1411 (2007)

    Article  MathSciNet  Google Scholar 

  18. Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9, 1532–1546 (2000)

    Article  MathSciNet  Google Scholar 

  19. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Color image denoising via sparse 3D collaborative filtering with grouping constraint in luminance-chrominance space. In: 2007 IEEE International Conference on Image Processing, vol. 1, p. I-313. IEEE (2007)

    Google Scholar 

  20. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869 (2014)

    Google Scholar 

  21. Xu, J., Zhang, L., Zhang, D., Feng, X.: Multi-channel weighted nuclear norm minimization for real color image denoising. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1096–1104 (2017)

    Google Scholar 

  22. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 4311–4322 (2006)

    Article  Google Scholar 

  23. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22, 1620–1630 (2012)

    Article  MathSciNet  Google Scholar 

  24. Xu, J., Zhang, L., Zhang, D.: A trilateral weighted sparse coding scheme for real-world image denoising. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 20–36 (2018)

    Google Scholar 

  25. Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 773–782 (2018)

    Google Scholar 

  26. Yue, Z., Yong, H., Zhao, Q., Meng, D., Zhang, L.: Variational denoising network: toward blind noise modeling and removal. In: Advances in Neural Information Processing Systems, pp. 1688–1699 (2019)

    Google Scholar 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  28. Anwar, S., Barnes, N.: Real image denoising with feature attention. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3155–3164 (2019)

    Google Scholar 

  29. Mildenhall, B., Barron, J.T., Chen, J., Sharlet, D., Ng, R., Carroll, R.: Burst denoising with kernel prediction networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2502–2510 (2018)

    Google Scholar 

  30. Xu, X., Li, M., Sun, W.: Learning deformable kernels for image and video denoising. arxiv abs/1904.06903 (2019)

    Google Scholar 

  31. Gueguen, L., Sergeev, A., Kadlec, B., Liu, R., Yosinski, J.: Faster neural networks straight from JPEG. In: Advances in Neural Information Processing Systems, pp. 3933–3944 (2018)

    Google Scholar 

  32. Chou, C.H., Li, Y.C.: A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile. IEEE Trans. Circuits Syst. Video Technol. 5, 467–476 (1995)

    Article  Google Scholar 

  33. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  34. Liu, D., Wen, B., Fan, Y., Loy, C.C., Huang, T.S.: Non-local recurrent network for image restoration. In: Advances in Neural Information Processing Systems, pp. 1673–1682 (2018)

    Google Scholar 

  35. Woo, S., Park, J., Lee, J.Y., So Kweon, I.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  36. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), pp. 839–846. IEEE (1998)

    Google Scholar 

  37. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2015)

    Google Scholar 

  38. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: ICLR (2017)

    Google Scholar 

  39. Po, D.Y., Do, M.N.: Directional multiscale modeling of images using the contourlet transform. IEEE Trans. Image Process. 15, 1610–1620 (2006)

    Article  MathSciNet  Google Scholar 

  40. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992)

    Article  MathSciNet  Google Scholar 

  41. Ma, K., et al.: Waterloo exploration database: new challenges for image quality assessment models. IEEE Trans. Image Process. 26, 1004–1016 (2016)

    Article  MathSciNet  Google Scholar 

  42. Plotz, T., Roth, S.: Benchmarking denoising algorithms with real photographs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1586–1595 (2017)

    Google Scholar 

  43. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1692–1700 (2018)

    Google Scholar 

  44. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1256–1272 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mo, H., Jiang, J., Wang, Q., Yin, D., Dong, P., Tian, J. (2021). Frequency Attention Network: Blind Noise Removal for Real Images. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12623. Springer, Cham. https://doi.org/10.1007/978-3-030-69532-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69532-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69531-6

  • Online ISBN: 978-3-030-69532-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics