Skip to main content

CS-MCNet: A Video Compressive Sensing Reconstruction Network with Interpretable Motion Compensation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12623))

Included in the following conference series:

Abstract

In this paper, a deep neural network with interpretable motion compensation called CS-MCNet is proposed to realize high-quality and real-time decoding of video compressive sensing. Firstly, explicit multi-hypothesis motion compensation is applied in our network to extract correlation information of adjacent frames (as shown in Fig. 1), which improves the recover performance. And then, a residual module further narrows down the gap between reconstruction result and original signal. The overall architecture is interpretable by using algorithm unrolling, which brings the benefits of being able to transfer prior knowledge about the conventional algorithms. As a result, a PSNR of 22 dB can be achieved at 64x compression ratio, which is about \(4\%\) to \(9\%\) better than state-of-the-art methods. In addition, due to the feed-forward architecture, the reconstruction can be processed by our network in real time and up to three orders of magnitude faster than traditional iterative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52, 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  2. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  3. Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.F., Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25, 83–91 (2008)

    Article  Google Scholar 

  4. Candes, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25, 21–30 (2008)

    Article  Google Scholar 

  5. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2006)

    Article  MathSciNet  Google Scholar 

  6. Baraniuk, R., Davenport, M.A., DeVore, R.A., Wakin, M.B.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28, 253–263 (2008)

    Article  MathSciNet  Google Scholar 

  7. Zhou, J., Zhou, J., Guo, L.: Angular intra prediction based measurement coding algorithm for compressively sensed image. In: 2018 IEEE International Conference on Multimedia Expo Workshops (ICMEW), pp. 1–6 (2018)

    Google Scholar 

  8. Yang, J., Yuan, X., Liao, X., Llull, P., Sapiro, G., Brady, D.J., Carin, L.: Gaussian mixture model for video compressive sensing. In: 2013 IEEE International Conference on Image Processing, pp. 19–23 (2013)

    Google Scholar 

  9. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)

    Article  MathSciNet  Google Scholar 

  10. He, L., Carin, L.: Exploiting structure in wavelet-based Bayesian compressive sensing. IEEE Trans. Signal Process. 57, 3488–3497 (2009)

    Article  MathSciNet  Google Scholar 

  11. Metzler, C.A., Maleki, A., Baraniuk, R.G.: From denoising to compressed sensing. IEEE Trans. Inf. Theory 62, 5117–5144 (2016)

    Article  MathSciNet  Google Scholar 

  12. Qu, X., et al.: Undersampled MRI reconstruction with patch-based directional wavelets. Magn. Reson. Imaging 30, 964–977 (2012)

    Article  Google Scholar 

  13. Zhan, Z., Cai, J., Guo, D., Liu, Y., Chen, Z., Qu, X.: Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction. IEEE Trans. Biomed. Eng. 63, 1850–1861 (2016)

    Article  Google Scholar 

  14. Mun, S., Fowler, J.E.: Residual reconstruction for block-based compressed sensing of video. In: 2011 Data Compression Conference, pp. 183–192 (2011)

    Google Scholar 

  15. Xu, K., Ren, F.: Csvideonet: A real-time end-to-end learning framework for high-frame-rate video compressive sensing. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1680–1688 (2018)

    Google Scholar 

  16. Yao, H., Dai, F., Zhang, S., Zhang, Y., Tian, Q., Xu, C.: DR2-Net: deep residual reconstruction network for image compressive sensing. Neurocomputing 359, 483–493 (2019)

    Article  Google Scholar 

  17. Iliadis, M., Spinoulas, L., Katsaggelos, A.K.: Deep fully-connected networks for video compressive sensing. Digit. Signal Proc. 72, 9–18 (2018)

    Article  Google Scholar 

  18. Kulkarni, K., Lohit, S., Turaga, P., Kerviche, R., Ashok, A.: ReconNet: non-iterative reconstruction of images from compressively sensed measurements. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 449–458 (2016)

    Google Scholar 

  19. Zhang, J., Ghanem, B.: ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1828–1837 (2018)

    Google Scholar 

  20. Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML 2010, Madison, WI, USA. Omnipress, pp. 399–406 (2010)

    Google Scholar 

  21. Yang, Y., Sun, J., Li, H., Xu, Z.: ADMM-CSNet: a deep learning approach for image compressive sensing. IEEE Trans. Pattern Anal. Mach. Intell. 42, 521–538 (2020)

    Article  Google Scholar 

  22. Erhan, D., Bengio, Y., Courville, A., Manzagol, P., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Tekalp, A.M.: Digital Video Processing, 2nd edn. Prentice Hall Press, New York (2015)

    Google Scholar 

  24. Jain, J., Jain, A.: Displacement measurement and its application in interframe image coding. IEEE Trans. Commun. 29, 1799–1808 (1981)

    Article  Google Scholar 

  25. Tramel, E.W., Fowler, J.E.: Video compressed sensing with multihypothesis. In: 2011 Data Compression Conference, pp. 193–202 (2011)

    Google Scholar 

  26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  27. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. ArXiv abs/1212.0402 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibo Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, B., Zhou, J., Yan, X., Jing, M., Wan, R., Fan, Y. (2021). CS-MCNet: A Video Compressive Sensing Reconstruction Network with Interpretable Motion Compensation. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12623. Springer, Cham. https://doi.org/10.1007/978-3-030-69532-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69532-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69531-6

  • Online ISBN: 978-3-030-69532-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics