Abstract
The developments in optical metrology and computer vision require more and more advanced camera models. Their geometric calibration is of essential importance. Usually, low-dimensional models are used, which however often have insufficient accuracy for the respective applications. A more sophisticated approach uses the generalized camera model. Here, each pixel is described individually by its geometric ray properties. Our efforts in this article strive to improve this model. Hence, we propose a new approach for calibration. Moreover, we show how the immense number of parameters can be efficiently calculated and how the measurement uncertainties of reference features can be effectively utilized. We demonstrate the benefits of our method through an extensive evaluation of different cameras, namely a standard webcam and a microlens-based light field camera.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2000)
Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., Hanrahan, P.: Light field photography with a hand-held plenoptic camera. Computer Science Technical Report CSTR 2, 1–11 (2005)
Pless, R.: Using many cameras as one. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, II-587-93, Los Alamitos, Calif. IEEE Computer Society (2003)
Swaminathan, R., Kang, S.B., Szeliski, R., Criminisi, A., Nayar, S.K.: On the motion and appearance of specularities in image sequences. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 508–523. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47969-4_34
Grossberg, M.D., Nayar, S.K.: A general imaging model and a method for finding its parameters, pp. 108–115. In: Proceedings/Eighth IEEE International Conference on Computer Vision, Los Alamitos, Calif. IEEE Computer Society (2001)
Grossberg, M.D., Nayar, S.K.: The raxel imaging model and ray-based calibration. Int. J. Comput. Vis. 61, 119–137 (2005)
Sturm, P., Ramalingam, S.: A generic concept for camera calibration. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3022, pp. 1–13. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24671-8_1
Ramalingam, S., Sturm, P.: A unifying model for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1309–1319 (2017)
Ramalingam, S., Sturm, P., Lodha, S.K.: Towards complete generic camera calibration. In: Schmid, C., Tomasi, C., Soatto, S. (eds.) CVPR 2005, Los Alamitos, Calif, pp. 1093–1098. IEEE Computer Society, (2005)
Bothe, T., Li, W., Schulte, M., Kopylow, C.V., Bergmann, R.B., Jüptner, W.P.O.: Vision ray calibration for the quantitative geometric description of general imaging and projection optics in metrology. Appl. Optics 49, 5851–5860 (2010)
Miraldo, P., Araujo, H., Queiro, J.: Point-based calibration using a parametric representation of the general imaging model. In: 2011 IEEE International Conference on Computer Vision (ICCV), Piscataway, NJ, pp. 2304–2311. IEEE (2011)
Miraldo, P., Araujo, H.: Calibration of smooth camera models. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2091–2103 (2013)
Schops, T., Larsson, V., Pollefeys, M., Sattler, T.: Why having 10,000 parameters in your camera model is better than twelve. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Bergamasco, F., Albarelli, A., Rodola, E., Torsello, A.: Can a fully unconstrained imaging model be applied effectively to central cameras? In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Piscataway, NJ, pp. 1391–1398. IEEE (2013)
Bergamasco, F., Albarelli, A., Cosmo, L., Torsello, A., Rodola, E., Cremers, D.: Adopting an unconstrained ray model in light-field cameras for 3D shape reconstruction. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Piscataway, NJ, pp. 3003–3012. IEEE (2015)
Chen, C.S., Chang, W.Y.: On pose recovery for generalized visual sensors. IEEE Trans. Pattern Anal. Mach. Intell. 26, 848–861 (2004)
Balzer, J., Werling, S.: Principles of shape from specular reflection. Measurement 43, 1305–1317 (2010)
Pankaj, D.S., Nidamanuri, R.R., Prasad, P.B.: 3-D imaging techniques and review of products. In: Proceedings of International Conference on Innovations in Computer Science and Engineering (2013)
van der Jeught, S., Dirckx, J.J.: Real-time structured light profilometry: a review. Opt. Lasers Eng. 87, 18–31 (2016)
Shevlin, F.: Analysis of orientation problems using plücker lines. In: Proceedings of MD and Los Angeles, CA, pp. 685–689. IEEE Computer Society Press (1984)
van der Hodge, W., Pedoe, D.: Methods of Algebraic Geometry. Cambridge University Press, Cambridge (1994)
Brox, T., Rosenhahn, B., Gall, J., Cremers, D.: Combined region and motion-based 3D tracking of rigid and articulated objects. IEEE Trans. Pattern Anal. Mach. Intell. 32, 402–415 (2010)
Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Oper. Res. Lett. 26, 127–136 (2000)
Zuo, C., Feng, S., Huang, L., Tao, T., Yin, W., Chen, Q.: Phase shifting algorithms for fringe projection profilometry: a review. Opt. Lasers Eng. 109, 23–59 (2018)
Fischer, M., Petz, M., Tutsch, R.: Model-based noise prediction for fringe projection systems - a tool for the statistical analysis of evaluation algorithms. TM Technisches Messen 84, 111–122 (2017)
Zuo, C., Huang, L., Zhang, M., Chen, Q., Asundi, A.: Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review. Opt. Lasers Eng. 85, 84–103 (2016)
Salvi, J., Pagès, J., Batlle, J.: Pattern codification strategies in structured light systems. Pattern Recogn. 37, 827–849 (2004)
Kanatani, K.: Analysis of 3-D rotation fitting. IEEE Trans. Pattern Anal. Mach. Intell. 16, 543–549 (1994)
Schweighofer, G., Pinz, A.: Globally optimal O(n) solution to the PnP problem for general camera models. In: BMVC (2008)
Ventura, J., Arth, C., Reitmayr, G., Schmalstieg, D.: A minimal solution to the generalized pose-and-scale problem. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 422–429. IEEE (2014)
Kneip, L., Li, H., Seo, Y.: UPnP: an optimal O(n) solution to the absolute pose problem with universal applicability. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 127–142. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_9
Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_23
Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An Invitation to 3-D Vision: From Images to Geometric Models. Springer, New York (2003). https://doi.org/10.1007/978-0-387-21779-6
Absil, P.A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press, Princeton (2009)
Boumal, N.: Optimization and estimation on manifolds. Ph.D. thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium (2014)
Niesen, U., Shah, D., Wornell, G.: Adaptive alternating minimization algorithms. In: 2007 IEEE International Symposium on Information Theory, pp. 1641–1645, Piscataway, NJ. IEEE Service Center (2007)
Nesterov, Y.E.:A method for solving the convex programming problem with convergencerate O(1/k\(\,\hat{}\,\)2).Dokl. akad. nauk Sssr. 269, pp. 543–547 (1983)
Bradski, G.: The openCV library. Dr. Dobb’s J. Softw. Tools, 120, 122–125 (2000)
Ihrke, I., Restrepo, J., Mignard-Debise, L.: Principles of light field imaging: briefly revisiting 25 years of research. IEEE Signal Process. Mag. 33, 59–69 (2016)
Zhang, Q., Zhang, C., Ling, J., Wang, Q., Yu, J.:A generic multi-projection-center model and calibration method for light field cameras. IEEE Trans. Pattern Anal. Mach. Intell. (2018)
Zhang, Q., Ling, J., Liu, Y., Yu, J.:Ray-space projection model for light field camera. In: CVPR 2019 (2019)
Bok, Y., Jeon, H.G., Kweon, I.S.: Geometric calibration of micro-lens-based light field cameras using line features. IEEE Trans. Pattern Anal. Mach. Intell. 39, 287–300 (2017)
Dansereau, D.G., Pizarro, O., Williams, S.B.: Decoding, calibration and rectification for lenselet-based plenoptic cameras. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1027–1034 (2013)
Institute of Industrial Information Technology, Karlsruhe Institute of Technology: Public GitLab repositories. GNU GPLv3 License (2020). https://gitlab.com/iiit-public
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Uhlig, D., Heizmann, M. (2021). A Calibration Method for the Generalized Imaging Model with Uncertain Calibration Target Coordinates. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12624. Springer, Cham. https://doi.org/10.1007/978-3-030-69535-4_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-69535-4_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69534-7
Online ISBN: 978-3-030-69535-4
eBook Packages: Computer ScienceComputer Science (R0)