Abstract
It is an important yet challenging task to detect objects on hazy images in real-world applications. The major challenge comes from low visual quality and large haze density variations. In this work, we aim to jointly solve the image dehazing and the object detection tasks in real hazy scenarios by using haze density as prior knowledge. Our proposed Unified Dehazing and Detection (UDnD) framework consists of three parts: a residual-aware haze density classifier, a density-aware dehazing network, and a density-aware object detector. First, the classifier exploits the residuals of hazy images to accurately predict density levels, which provide rich domain knowledge for the subsequent two tasks. Then, we design respectively a High-Resolution Dehazing Network (HRDN) and a Faster R-CNN-based multi-domain object detector to leverage the extracted density information and tackle hazy object detection. Experiments demonstrate that UDnD performs favorably against other methods for object detection in real-world hazy scenes. Also, HRDN achieves better results than state-of-the-art dehazing methods in terms of PSNR and SSIM. Hence, HRDN can conduct haze removal effectively, based on which UDnD is able to provide high-quality detection results.
Z. Zhang and L. Zhao—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, Y., You, S., Brown, M.S., Tan, R.T.: Haze visibility enhancement: a survey and quantitative benchmarking. CVIU 165, 1–16 (2017)
Li, B., et al.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28, 492–505 (2019)
Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. IJCV 126, 973–992 (2018)
Pei, Y., Huang, Y., Zou, Q., Lu, Y., Wang, S.: Does haze removal help CNN-based image classification? In: ECCV, pp. 682–697 (2018)
Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: all-in-one dehazing network. In: ICCV, pp. 4770–4778 (2017)
Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R-CNN for object detection in the wild. In: CVPR, pp. 3339–3348 (2018)
Zhu, X., Pang, J., Yang, C., Shi, J., Lin, D.: Adapting object detectors via selective cross-domain alignment. In: CVPR, pp. 687–696 (2019)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2019)
Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285 (2016)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. TPAMI 39, 1137–1149 (2017)
Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788 (2016)
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: single shot multibox detector. In: ECCV, pp. 21–37 (2016)
Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79, 151–175 (2010)
He, Z., Zhang, L.: Multi-adversarial faster-RCNN for unrestricted object detection. In: ICCV, pp. 6668–6677 (2019)
Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Strong-weak distribution alignment for adaptive object detection. In: CVPR, pp. 6956–6965 (2019)
Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: CVPR, pp. 3723–3732 (2018)
Zheng, Y., Huang, D., Liu, S., Wang, Y.: Cross-domain object detection through coarse-to-fine feature adaptation. arXiv preprint arXiv:2003.10275 (2020)
Koschmieder, H.: Theorie der horizontalen sichtweite. Beitrage zur Physik der freien Atmosphare, pp. 33–53 (1924)
Berman, D., treibitz, T., Avidan, S.: Non-local image dehazing. In: CVPR, pp. 1674–1682 (2016)
Fattal, R.: Dehazing using color-lines. TOG 34, 1–14 (2014)
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. TPAMI 33, 2341–2353 (2011)
Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: ICCV, pp. 617–624 (2013)
Tan, R.T.: Visibility in bad weather from a single image. In: CVPR, pp. 1–8 (2008)
Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. TIP 24, 3522–3533 (2015)
Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. TIP 25, 5187–5198 (2016)
Deng, Z., et al.: Deep multi-model fusion for single-image dehazing. In: ICCV, pp. 2453–2462 (2019)
Li, R., Pan, J., Li, Z., Tang, J.: Single image dehazing via conditional generative adversarial network. In: CVPR, pp. 8202–8211 (2018)
Li, Y., et al.: Lap-net: level-aware progressive network for image dehazing. In: ICCV, pp. 3276–3285 (2019)
Liu, X., Ma, Y., Shi, Z., Chen, J.: Griddehazenet: attention-based multi-scale network for image dehazing. In: ICCV, pp. 7314–7323 (2019)
Liu, Y., Pan, J., Ren, J., Su, Z.: Learning deep priors for image dehazing. In: ICCV, pp. 2492–2500 (2019)
Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.H.: Single image dehazing via multi-scale convolutional neural networks. In: ECCV, pp. 154–169 (2016)
Yang, D., Sun, J.: Proximal dehaze-net: a prior learning-based deep network for single image dehazing. In: ECCV, pp. 702–717 (2018)
Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: CVPR, pp. 3194–3203 (2018)
Ren, W., et al.: Gated fusion network for single image dehazing. In: CVPR, pp. 3253–3261 (2018)
Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: Ffa-net: feature fusion attention network for single image dehazing. In: AAAI, pp. 11908–11915 (2020)
Qu, Y., Chen, Y., Huang, J., Xie, Y.: Enhanced pix2pix dehazing network. In: CVPR, pp. 8160–8168 (2019)
Li, R., Kintak, U.: Haze density estimation and dark channel prior based image defogging. In: ICWAPR, pp. 29–35 (2018)
Yeh, C.H., Kang, L.W., Lin, C.Y., Lin, C.Y.: Efficient image/video dehazing through haze density analysis based on pixel-based dark channel prior. In: ISIC, pp. 238–241 (2012)
Dai, D., Sakaridis, C., Hecker, S., Van Gool, L.: Curriculum model adaptation with synthetic and real data for semantic foggy scene understanding. IJCV 128, 1182–1204 (2019)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NeurIPS, pp. 1097–1105 (2012)
Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: CVPR, pp. 4293–4302 (2016)
Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. arXiv preprint arXiv:1502.02791 (2015)
Mallya, A., Davis, D., Lazebnik, S.: Piggyback: adapting a single network to multiple tasks by learning to mask weights. In: ECCV, pp. 67–82 (2018)
Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456 (2015)
Bilen, H., Vedaldi, A.: Universal representations: The missing link between faces, text, planktons, and cat breeds. arXiv preprint arXiv:1701.07275 (2017)
Rebuffi, S.A., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual adapters. In: NeurIPS, pp. 506–516 (2017)
Rebuffi, S.A., Bilen, H., Vedaldi, A.: Efficient parametrization of multi-domain deep neural networks. In: CVPR, pp. 8119–8127 (2018)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)
Wang, X., Cai, Z., Gao, D., Vasconcelos, N.: Towards universal object detection by domain attention. In: CVPR, pp. 7289–7298 (2019)
Choi, L.K., You, J., Bovik, A.C.: Referenceless prediction of perceptual fog density and perceptual image defogging. TIP 24, 3888–3901 (2015)
NOAA: Federal meteorological handbook no. 1: Surface weather observations and reports (2005)
Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-stream dense network. In: CVPR, pp. 695–704 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: a better and simpler baseline. In: CVPR, pp. 3937–3946 (2019)
He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969 (2017)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR, pp. 3213–3223 (2016)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. TIP 13, 600–612 (2004)
Chen, K., et al.: Mmdetection: open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS, pp. 8024–8035 (2019)
Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)
Acknowledgement
This work was supported by the National Science Fund of China (Grant Nos. 61702262, U1713208), Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 61861136011), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20181299), Young Elite Scientists Sponsorship Program by CAST (2018QNRC001), the Fundamental Research Funds for the Central Universities” (Grant No.30920032201), and Science and Technology on Parallel and Distributed Processing Laboratory (PDL) Open Fund (WDZC20195500106).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Z., Zhao, L., Liu, Y., Zhang, S., Yang, J. (2021). Unified Density-Aware Image Dehazing and Object Detection in Real-World Hazy Scenes. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-69538-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69537-8
Online ISBN: 978-3-030-69538-5
eBook Packages: Computer ScienceComputer Science (R0)