Skip to main content

Unified Density-Aware Image Dehazing and Object Detection in Real-World Hazy Scenes

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12625))

Included in the following conference series:

  • 861 Accesses

Abstract

It is an important yet challenging task to detect objects on hazy images in real-world applications. The major challenge comes from low visual quality and large haze density variations. In this work, we aim to jointly solve the image dehazing and the object detection tasks in real hazy scenarios by using haze density as prior knowledge. Our proposed Unified Dehazing and Detection (UDnD) framework consists of three parts: a residual-aware haze density classifier, a density-aware dehazing network, and a density-aware object detector. First, the classifier exploits the residuals of hazy images to accurately predict density levels, which provide rich domain knowledge for the subsequent two tasks. Then, we design respectively a High-Resolution Dehazing Network (HRDN) and a Faster R-CNN-based multi-domain object detector to leverage the extracted density information and tackle hazy object detection. Experiments demonstrate that UDnD performs favorably against other methods for object detection in real-world hazy scenes. Also, HRDN achieves better results than state-of-the-art dehazing methods in terms of PSNR and SSIM. Hence, HRDN can conduct haze removal effectively, based on which UDnD is able to provide high-quality detection results.

Z. Zhang and L. Zhao—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, Y., You, S., Brown, M.S., Tan, R.T.: Haze visibility enhancement: a survey and quantitative benchmarking. CVIU 165, 1–16 (2017)

    Google Scholar 

  2. Li, B., et al.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28, 492–505 (2019)

    Article  MathSciNet  Google Scholar 

  3. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. IJCV 126, 973–992 (2018)

    Article  Google Scholar 

  4. Pei, Y., Huang, Y., Zou, Q., Lu, Y., Wang, S.: Does haze removal help CNN-based image classification? In: ECCV, pp. 682–697 (2018)

    Google Scholar 

  5. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: all-in-one dehazing network. In: ICCV, pp. 4770–4778 (2017)

    Google Scholar 

  6. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R-CNN for object detection in the wild. In: CVPR, pp. 3339–3348 (2018)

    Google Scholar 

  7. Zhu, X., Pang, J., Yang, C., Shi, J., Lin, D.: Adapting object detectors via selective cross-domain alignment. In: CVPR, pp. 687–696 (2019)

    Google Scholar 

  8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  9. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

    Google Scholar 

  10. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285 (2016)

  11. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. TPAMI 39, 1137–1149 (2017)

    Article  Google Scholar 

  12. Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)

    Google Scholar 

  13. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788 (2016)

    Google Scholar 

  14. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: single shot multibox detector. In: ECCV, pp. 21–37 (2016)

    Google Scholar 

  15. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79, 151–175 (2010)

    Article  MathSciNet  Google Scholar 

  16. He, Z., Zhang, L.: Multi-adversarial faster-RCNN for unrestricted object detection. In: ICCV, pp. 6668–6677 (2019)

    Google Scholar 

  17. Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Strong-weak distribution alignment for adaptive object detection. In: CVPR, pp. 6956–6965 (2019)

    Google Scholar 

  18. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: CVPR, pp. 3723–3732 (2018)

    Google Scholar 

  19. Zheng, Y., Huang, D., Liu, S., Wang, Y.: Cross-domain object detection through coarse-to-fine feature adaptation. arXiv preprint arXiv:2003.10275 (2020)

  20. Koschmieder, H.: Theorie der horizontalen sichtweite. Beitrage zur Physik der freien Atmosphare, pp. 33–53 (1924)

    Google Scholar 

  21. Berman, D., treibitz, T., Avidan, S.: Non-local image dehazing. In: CVPR, pp. 1674–1682 (2016)

    Google Scholar 

  22. Fattal, R.: Dehazing using color-lines. TOG 34, 1–14 (2014)

    Article  Google Scholar 

  23. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. TPAMI 33, 2341–2353 (2011)

    Article  Google Scholar 

  24. Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: ICCV, pp. 617–624 (2013)

    Google Scholar 

  25. Tan, R.T.: Visibility in bad weather from a single image. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  26. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. TIP 24, 3522–3533 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. TIP 25, 5187–5198 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Deng, Z., et al.: Deep multi-model fusion for single-image dehazing. In: ICCV, pp. 2453–2462 (2019)

    Google Scholar 

  29. Li, R., Pan, J., Li, Z., Tang, J.: Single image dehazing via conditional generative adversarial network. In: CVPR, pp. 8202–8211 (2018)

    Google Scholar 

  30. Li, Y., et al.: Lap-net: level-aware progressive network for image dehazing. In: ICCV, pp. 3276–3285 (2019)

    Google Scholar 

  31. Liu, X., Ma, Y., Shi, Z., Chen, J.: Griddehazenet: attention-based multi-scale network for image dehazing. In: ICCV, pp. 7314–7323 (2019)

    Google Scholar 

  32. Liu, Y., Pan, J., Ren, J., Su, Z.: Learning deep priors for image dehazing. In: ICCV, pp. 2492–2500 (2019)

    Google Scholar 

  33. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.H.: Single image dehazing via multi-scale convolutional neural networks. In: ECCV, pp. 154–169 (2016)

    Google Scholar 

  34. Yang, D., Sun, J.: Proximal dehaze-net: a prior learning-based deep network for single image dehazing. In: ECCV, pp. 702–717 (2018)

    Google Scholar 

  35. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: CVPR, pp. 3194–3203 (2018)

    Google Scholar 

  36. Ren, W., et al.: Gated fusion network for single image dehazing. In: CVPR, pp. 3253–3261 (2018)

    Google Scholar 

  37. Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: Ffa-net: feature fusion attention network for single image dehazing. In: AAAI, pp. 11908–11915 (2020)

    Google Scholar 

  38. Qu, Y., Chen, Y., Huang, J., Xie, Y.: Enhanced pix2pix dehazing network. In: CVPR, pp. 8160–8168 (2019)

    Google Scholar 

  39. Li, R., Kintak, U.: Haze density estimation and dark channel prior based image defogging. In: ICWAPR, pp. 29–35 (2018)

    Google Scholar 

  40. Yeh, C.H., Kang, L.W., Lin, C.Y., Lin, C.Y.: Efficient image/video dehazing through haze density analysis based on pixel-based dark channel prior. In: ISIC, pp. 238–241 (2012)

    Google Scholar 

  41. Dai, D., Sakaridis, C., Hecker, S., Van Gool, L.: Curriculum model adaptation with synthetic and real data for semantic foggy scene understanding. IJCV 128, 1182–1204 (2019)

    Article  Google Scholar 

  42. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NeurIPS, pp. 1097–1105 (2012)

    Google Scholar 

  43. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: CVPR, pp. 4293–4302 (2016)

    Google Scholar 

  44. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. arXiv preprint arXiv:1502.02791 (2015)

  45. Mallya, A., Davis, D., Lazebnik, S.: Piggyback: adapting a single network to multiple tasks by learning to mask weights. In: ECCV, pp. 67–82 (2018)

    Google Scholar 

  46. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456 (2015)

    Google Scholar 

  47. Bilen, H., Vedaldi, A.: Universal representations: The missing link between faces, text, planktons, and cat breeds. arXiv preprint arXiv:1701.07275 (2017)

  48. Rebuffi, S.A., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual adapters. In: NeurIPS, pp. 506–516 (2017)

    Google Scholar 

  49. Rebuffi, S.A., Bilen, H., Vedaldi, A.: Efficient parametrization of multi-domain deep neural networks. In: CVPR, pp. 8119–8127 (2018)

    Google Scholar 

  50. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  51. Wang, X., Cai, Z., Gao, D., Vasconcelos, N.: Towards universal object detection by domain attention. In: CVPR, pp. 7289–7298 (2019)

    Google Scholar 

  52. Choi, L.K., You, J., Bovik, A.C.: Referenceless prediction of perceptual fog density and perceptual image defogging. TIP 24, 3888–3901 (2015)

    MathSciNet  MATH  Google Scholar 

  53. NOAA: Federal meteorological handbook no. 1: Surface weather observations and reports (2005)

    Google Scholar 

  54. Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-stream dense network. In: CVPR, pp. 695–704 (2018)

    Google Scholar 

  55. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  56. Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: a better and simpler baseline. In: CVPR, pp. 3937–3946 (2019)

    Google Scholar 

  57. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  58. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR, pp. 3213–3223 (2016)

    Google Scholar 

  59. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. TIP 13, 600–612 (2004)

    Google Scholar 

  60. Chen, K., et al.: Mmdetection: open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  61. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS, pp. 8024–8035 (2019)

    Google Scholar 

  62. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  63. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  64. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

Download references

Acknowledgement

This work was supported by the National Science Fund of China (Grant Nos. 61702262, U1713208), Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 61861136011), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20181299), Young Elite Scientists Sponsorship Program by CAST (2018QNRC001), the Fundamental Research Funds for the Central Universities” (Grant No.30920032201), and Science and Technology on Parallel and Distributed Processing Laboratory (PDL) Open Fund (WDZC20195500106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanshan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Zhao, L., Liu, Y., Zhang, S., Yang, J. (2021). Unified Density-Aware Image Dehazing and Object Detection in Real-World Hazy Scenes. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69538-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69537-8

  • Online ISBN: 978-3-030-69538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics