Skip to main content

A GRASP/VND Heuristic for the Generalized Steiner Problem with Node-Connectivity Constraints and Hostile Reliability

  • Conference paper
  • First Online:
Variable Neighborhood Search (ICVNS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12559))

Included in the following conference series:

  • 325 Accesses

Abstract

The object under study is a combinatorial optimization problem motivated by the topological network design of communication systems, meeting reliability constraints. Specifically, we introduce the Generalized Steiner Problem with Node-Connectivity Constraints and Hostile Reliability, or GSPNCHR for short. Since the GSPNCHR belongs to the class of \(\mathcal {NP}\)-Hard problems, approximative algorithms are adequate for medium and large-sized networks. As a consequence, we develop a GRASP/VND methodology. The VND includes three local searches, that replace special elementary paths or trees, preserving feasibility. Our goal is to find a minimum-cost solution, meeting a reliability threshold, where both nodes and links may fail with given probabilities. We adapted TSPLIB benchmark in order to highlight the effectiveness of our proposal. The results suggest that our heuristic is cost-effective, providing highly-reliable networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, A., Klein, P., Ravi, R.: When trees collide: an approximation algorithm for the generalized Steiner problem on networks. SIAM J. Comput. 24(3), 440–456 (1995)

    Article  MathSciNet  Google Scholar 

  2. Archer, K., Graves, C., Milan, D.: Classes of uniformly most reliable graphs for all-terminal reliability. Discret. Appl. Math. 267, 12–29 (2019)

    Article  MathSciNet  Google Scholar 

  3. Barrera, J., Cancela, H., Moreno, E.: Topological optimization of reliable networks under dependent failures. Oper. Res. Lett. 43(2), 132–136 (2015)

    Article  MathSciNet  Google Scholar 

  4. Boesch, F.T., Satyanarayana, A., Suffel, C.L.: A survey of some network reliability analysis and synthesis results. Networks 54(2), 99–107 (2009)

    Article  MathSciNet  Google Scholar 

  5. Canale, E., et al.: Recursive variance reduction method in stochastic monotone binary systems. In: Proceedings of the 7th International Workshop on Reliable Networks Design and Modeling, pp. 135–141 (2015)

    Google Scholar 

  6. Canale, E., Robledo, F., Romero, P., Viera, J.: Building reliability-improving network transformations. In: Proceedings of the 15th International Conference on the Design of Reliable Communication Networks, pp. 107–113. IEEE (2019)

    Google Scholar 

  7. Cancela, H., Guerberoff, G., Robledo, F., Romero, P.: Reliability maximization in stochastic binary systems. In: Proceedings of the 21st Conference on Innovation in Clouds, Internet and Networks and Workshops, pp. 1–7. IEEE (2018)

    Google Scholar 

  8. Cancela, H., El Khadiri, M., Rubino, G.: A new simulation method based on the RVR principle for the rare event network reliability problem. Ann. Oper. Res. 196(1), 111–136 (2012)

    Article  Google Scholar 

  9. Fishman, G.: Monte Carlo. Springer Series in Operations Research and Financial Engineering. Springer, Heidelberg (1996)

    Google Scholar 

  10. Gabow, H., Goemans, M., Williamson, D.: An efficient approximation algorithm for the survivable network design problem. Math. Program. 82, 13–40 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Garey, M., Johnson, D.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., USA (1990)

    Google Scholar 

  12. Kamal, J.: A factor 2 approximation algorithm for the generalized Steiner network problem. In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, FOCS 1998, p. 448. IEEE Computer Society (1998)

    Google Scholar 

  13. Kleywegt, A., Shapiro, A., Homem-de-Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2002)

    Article  MathSciNet  Google Scholar 

  14. Kortsarz, G., Krauthgamer, R., Lee, J.: Hardness of approximation for vertex-connectivity network design problems. SIAM J. Comput. 33(3), 704–720 (2004)

    Article  MathSciNet  Google Scholar 

  15. Laborde, S.: Topological Optimization of Fault-Tolerant Networks meeting Reliability Constraints. Master’s thesis, Universidad de la República (2020)

    Google Scholar 

  16. Lourenço, R., Figueiredo, G., Tornatore, M., Mukherjee, B.: Data evacuation from data centers in disaster-affected regions through software-defined satellite networks. Comput. Netw. 148, 88–100 (2019)

    Article  Google Scholar 

  17. Mart, R., Pardalos, P., Resende, M.: Handbook of Heuristics, 1st edn. Springer, Heidelberg (2018)

    Google Scholar 

  18. Martins, E., Pascoal, M.: A new implementation of Yen’s ranking loopless paths algorithm. Q. J. Belgian French Italian Oper. Res. Soc. 1(2), 121–133 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Nesmachnow, S.: Evaluating simple metaheuristics for the generalized Steiner problem. J. Comput. Sci. Technol. 5(4) (2005)

    Google Scholar 

  20. Pulsipher, J.L., Zavala, V.M.: Measuring and optimizing system reliability: a stochastic programming approach. TOP 1–20 (2020)

    Google Scholar 

  21. Resende, M., Ribeiro, C.: Optimization by GRASP. Springer, Heidelberg (2016). https://doi.org/10.1007/978-1-4939-6530-4

  22. Rodríguez-Pereira, J., Fernández, E., Laporte, G., Benavent, E., Martínez-Sykora, A.: The Steiner traveling salesman problem and its extensions. Eur. J. Oper. Res. 278(2), 615–628 (2019)

    Article  MathSciNet  Google Scholar 

  23. Sartor, P., Robledo, F.: GRASP algorithms for the edge-survivable generalized Steiner problem. Int. J. Control Autom. 5, 27–44 (2012)

    Google Scholar 

  24. Suzuki, H., Ishihata, M., Minato, S.: Designing survivable networks with zero-suppressed binary decision diagrams. In: Rahman, M.S., Sadakane, K., Sung, W.-K. (eds.) WALCOM 2020. LNCS, vol. 12049, pp. 273–285. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39881-1_23

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Project ANII FCE_1_2019_1_156693 Teoría y Construcción de Redes de Máxima Confiabilidad, MATHAMSUD 19-MATH-03 Rare events analysis in multi-component systems with dependent components and STIC-AMSUD ACCON Algorithms for the capacity crunch problem in optical networks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laborde, S., Robledo, F., Romero, P., Viera, O. (2021). A GRASP/VND Heuristic for the Generalized Steiner Problem with Node-Connectivity Constraints and Hostile Reliability. In: Mladenovic, N., Sleptchenko, A., Sifaleras, A., Omar, M. (eds) Variable Neighborhood Search. ICVNS 2021. Lecture Notes in Computer Science(), vol 12559. Springer, Cham. https://doi.org/10.1007/978-3-030-69625-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69625-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69624-5

  • Online ISBN: 978-3-030-69625-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics