Skip to main content

An Advanced Framework for Critical Infrastructure Protection Using Computer Vision Technologies

  • Conference paper
  • First Online:
Cyber-Physical Security for Critical Infrastructures Protection (CPS4CIP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12618))

  • 551 Accesses

Abstract

Over the past decade, there has been unprecedented advancements in the field of computer vision by adopting AI-based solutions. In particular, cutting edge computer vision technology based on deep-learning approaches has been deployed with an extraordinary degree of success. The ability to extract semantic concepts from continuous processing of video stream in real-time has led to the investigation of such solutions to enhance the operational security of critical infrastructure against intruders. Despite the success of computer vision technologies validated in a laboratory environment, there still exists several challenges that limit the deployment of these solutions in operational environment. Addressing these challenges, the paper presents a framework that integrates three main computer vision technologies namely (i) person detection; (ii) person re-identification and (iii) face recognition to enhance the operational security of critical infrastructure perimeter. The novelty of the proposed framework relies on the integration of key technical innovations that satisfies the operational requirements of critical infrastructure in using computer vision technologies. One such requirement relates to data privacy and citizen rights, following the implementation of General Data Protection Regulation across Europe for the successful adoption of video surveillance for infrastructure security. The video analytics solution proposed in the paper integrates privacy preserving technologies, high-level rule engine for threat identification and a knowledge model for escalating threat categorises to human operator. The various components of the proposed framework has been validated using commercially available graphical processing units for detecting intruders. The performance o the proposed framework has been evaluated in operational environments of the critical infrastructure. An overall accuracy of 97% is observed in generating alerts against malicious intruders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://defender-project.eu/.

  2. 2.

    https://www.aescrypt.com/.

References

  1. Arachchilage, S.W., Izquierdo, E.: A framework for real-time face-recognition. In: 2019 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4 (2019)

    Google Scholar 

  2. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. (2008). https://doi.org/10.1016/j.cviu.2007.09.014

    Article  Google Scholar 

  3. Bowyer, K.W., Chang, K., Flynn, P.: A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Comput. Vis. Image Underst. (2006). https://doi.org/10.1016/j.cviu.2005.05.005

    Article  Google Scholar 

  4. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 (2017). https://doi.org/10.1109/CVPR.2017.143

  5. Chen, L., Ai, H., Zhuang, Z., Shang, C.: Real-time multiple people tracking with deeply learned candidate selection and person re-identification. In: Proceedings - IEEE International Conference on Multimedia and Expo (2018). https://doi.org/10.1109/ICME.2018.8486597

  6. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learn. (1995). https://doi.org/10.1023/A:1022627411411

    Article  MATH  Google Scholar 

  7. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: Object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005 (2005).https://doi.org/10.1109/CVPR.2005.177

  9. Ding, C., Tao, D.: A comprehensive survey on pose-invariant face recognition. ACM Trans. Intell. Syst. Technol. (2016). https://doi.org/10.1145/2845089

    Article  Google Scholar 

  10. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (2013). https://doi.org/10.1177/0278364913491297

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2015). https://doi.org/10.1109/TPAMI.2015.2389824

    Article  Google Scholar 

  12. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report (2007)

    Google Scholar 

  13. JafriRabia, R., A.: J. Inf. Process. Syst. 5(2), 41–68

    Google Scholar 

  14. Jiang, Z., Huynh, D.Q.: Multiple pedestrian tracking from monocular videos in an interacting multiple model framework. IEEE Trans. Image Process. (2018). https://doi.org/10.1109/TIP.2017.2779856

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiao, L., et al.: A survey of deep learning-based object detection. CoRR abs/1907.09408 (2019), http://arxiv.org/abs/1907.09408

  16. Khan, A., Rinner, B., Cavallaro, A.: Cooperative robots to observe moving targets: Review. IEEE Trans. Cybernet. (2018). https://doi.org/10.1109/TCYB.2016.2628161

    Article  Google Scholar 

  17. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision (2015). https://doi.org/10.1109/ICCV.2015.425

  18. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the IEEE International Conference on Computer Vision (1999). https://doi.org/10.1109/iccv.1999.790410

  19. Masi, I., Wu, Y., Hassner, T., Natarajan, P.: Deep face recognition: a survey. In: Proceedings - 31st Conference on Graphics, Patterns and Images, SIBGRAPI 2018 (2019). https://doi.org/10.1109/SIBGRAPI.2018.00067

  20. Ochoa-Villegas, M.A., Nolazco-Flores, J.A., Barron-Cano, O., Kakadiaris, I.A.: Addressing the illumination challenge in two-dimensional face recognition: a survey. IET Comput. Vis. 9(6), 978–992 (2015). https://doi.org/10.1049/iet-cvi.2014.0086

    Article  Google Scholar 

  21. Padilla-López, J.R., Chaaraoui, A.A., Flórez-Revuelta, F.: Visual privacy protection methods: a survey. Expert Syst. Appl. 42(9), 4177–4195 (2015). https://doi.org/10.1016/j.eswa.2015.01.041

    Article  Google Scholar 

  22. Ristani, E., Tomasi, C.: Features for multi-target multi-camera tracking and re-identification. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2018). https://doi.org/10.1109/CVPR.2018.00632

  23. Scheenstra, A., Ruifrok, A., Veltkamp, R.C.: A survey of 3d face recognition methods. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) Audio- and Video-Based Biometric Person Authentication, pp. 891–899. Springer, Berlin Heidelberg, Berlin, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: Proceedings of the IEEE International Conference on Computer Vision (2003). https://doi.org/10.1109/iccv.2003.1238663

  25. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  26. Tian, Y., Luo, P., Wang, X., Tang, X.: Deep learning strong parts for pedestrian detection. In: Proceedings of the IEEE International Conference on Computer Vision (2015). https://doi.org/10.1109/ICCV.2015.221

  27. Varior, R.R., Haloi, M., Wang, G.: Gated siamese convolutional neural network architecture for human re-identification. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2016). https://doi.org/10.1007/978-3-319-46484-8_48

  28. Wang, M., Deng, W.: Deep face recognition: A survey. CoRR abs/1804.06655 (2018). http://arxiv.org/abs/1804.06655

  29. Wang, X.: Intelligent multi-camera video surveillance: a review. Pattern Recogn. Lett. (2013). https://doi.org/10.1016/j.patrec.2012.07.005

    Article  Google Scholar 

  30. Zhang, S., Benenson, R., Schiele, B.: Filtered channel features for pedestrian detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2015). https://doi.org/10.1109/CVPR.2015.7298784

  31. Zhang, X., Chandramouli, K., Gabrijelcic, D., Zahariadis, T., Giunta, G.: Physical security detectors for critical infrastructures against new-age threat of drones and human intrusion. In: 2020 IEEE International Conference on Multimedia Expo Workshops (ICMEW), pp. 1–4 (2020)

    Google Scholar 

  32. Zhang, X., Gao, Y.: Face recognition across pose: a review. Pattern Recogn. (2009). https://doi.org/10.1016/j.patcog.2009.04.017

    Article  Google Scholar 

  33. Zhang, Z., Wu, J., Zhang, X., Zhang, C.: Multi-target, multi-camera tracking by hierarchical clustering: Recent progress on dukemtmc project. CoRR abs/1712.09531 (2017), http://arxiv.org/abs/1712.09531

  34. Zheng, L., Huang, Y., Lu, H., Yang, Y.: Pose-invariant embedding for deep person re-identification. IEEE Trans. Image Process. (2019). https://doi.org/10.1109/TIP.2019.2910414

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The research activities leading to this publication has been partly funded by the European Union Horizon 2020 Research and Innovation program under MAGNETO RIA project (grant agreement No. 786629) and DEFENDER IA project (grant agreement No. 740898).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Chandramouli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chandramouli, K., Izquierdo, E. (2021). An Advanced Framework for Critical Infrastructure Protection Using Computer Vision Technologies. In: Abie, H., et al. Cyber-Physical Security for Critical Infrastructures Protection. CPS4CIP 2020. Lecture Notes in Computer Science(), vol 12618. Springer, Cham. https://doi.org/10.1007/978-3-030-69781-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69781-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69780-8

  • Online ISBN: 978-3-030-69781-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics