Skip to main content

Spatial Queries Based on Learned Index

  • Conference paper
  • First Online:
Spatial Data and Intelligence (SpatialDI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12567))

Included in the following conference series:

  • 792 Accesses

Abstract

With the popularity of location-based services, the scale of spatial data is increasing. Spatial indexes play an important role in spatial databases, and their performance determines the efficiency of data access and query processing. Most of the traditional spatial indexes divide data space or data objects without considering the distribution characteristics of data. In this paper, we design a spatial index structure, named learned Hilbert Model (HM) index. We combine the Hilbert space-filling curve and the two-stage model to build the spatial index. We propose algorithms for point query and range query according to data distribution rules. Experimental results show that the learned HM index can reduce the storage cost by 99% compared with R-tree and Grid Index. Point query efficiency is 40% higher than R-tree and 51% higher than Grid Index. The efficiency of range query is up to 50% higher than R-tree and 57% higher than Grid Index.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, H., Andersen, D., Pavlo, A., Kaminsky, M., Ma, L., Shen, R.: Reducing the storage overhead of main-memory OLTP databases with hybrid indexes. In: Proceedings of the 2016 International Conference on Management of Data, pp. 1567−1581. ACM (2016)

    Google Scholar 

  2. Wu, X., Ni, F., Jiang, S.: Wormhole: a fast ordered index for in-memory data management. In: Proceedings of the Fourteenth EuroSys Conference, pp. 1−16. ACM (2019)

    Google Scholar 

  3. Kraska, T., Beutel, A., Chi, E., Dean, J., Polyzotis, N.: The case for learned index structures. In: ACM SIGMOD, pp. 489–504 (2018)

    Google Scholar 

  4. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: ACM SIGMOD, pp. 47–57 (1984)

    Google Scholar 

  5. Finkel, R., Bentley, J.L.: Quadtree: a data structure for retrieval on composite keys. Acta Inf. 4, 1–9 (1974)

    Article  Google Scholar 

  6. Sagan, H.: Space-Filling Curves. Springer, New York (1994). https://doi.org/10.1007/978-1-4612-0871-6

  7. Rigaux, P., Scholl. M.,Voisard, A.: Spatial databases with application to GIS. In: ACM SIGMOD (2001)

    Google Scholar 

  8. Xiao, W., Liao, Y.: Lattice index mechanism in spatial object database system. J. Comput. 017(010), 736–742 (1994)

    Google Scholar 

  9. Kröse, B., Smagt, P.: An introduction to neural networks (1996)

    Google Scholar 

  10. Ding, J., Minhas, U. F., Zhang, H., Li, Y., Wang, C., Chandramouli, B.: ALEX: an updatable adaptive learned index (2019)

    Google Scholar 

  11. Gao, Y., Ye, J., Yang, N., Gao, X., Chen, G.: Middle layer based scalable learned index scheme. J. Softw. 31(3), 620–633 (2020)

    Google Scholar 

  12. Wang, H., Fu, X., Xu, J., Lu, H.: Learned index for spatial queries. In: MDM. IEEE (2019)

    Google Scholar 

  13. Mokbel, M., Aref, W., Kamel, I.: Analysis of multi-dimensional space-filling curves. Geoinformatica 7(3), 179–209 (2003)

    Article  Google Scholar 

  14. Lam, W., Shapiro, J.: A class of fast algorithms for the Peano-Hilbert space-filling curve. In: IEEE International Conference. IEEE (1994)

    Google Scholar 

  15. Magdon-Ismail, M., Atiya, A.: Density estimation and random variate generation using multilayer networks. IEEE Trans. Neural Networks 13(3), 497–520 (2002)

    Article  Google Scholar 

  16. Curtin, R., Edel, M., Lozhnikov, M.: mlpack 3: a fast, flexible machine learning library. J. Open Source Softw. 3(26), 726 (2018)

    Article  Google Scholar 

  17. Güting, R., Behr, T., Düntgen, C.: SECONDO: a platform for moving objects database research and for publishing and integrating research implementations. IEEE Data Eng. Bull. 33(2), 56–63 (2010)

    Google Scholar 

Download references

Acknowledgement

This work is supported by NSFC under grants 61972198, Natural Science Foundation of Jiangsu Province of China under grants BK20191273 and the Foundation of Graduate Innovation Center in Nanjing University of Areonautics and Astronautics under grants KFJJ20191604.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiu Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, N., Xu, J. (2021). Spatial Queries Based on Learned Index. In: Meng, X., Xie, X., Yue, Y., Ding, Z. (eds) Spatial Data and Intelligence. SpatialDI 2020. Lecture Notes in Computer Science(), vol 12567. Springer, Cham. https://doi.org/10.1007/978-3-030-69873-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69873-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69872-0

  • Online ISBN: 978-3-030-69873-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics